
Interface Specification

Human Authentication -
Application Program Interface (HA-API)

Ver 2.0

THE DEPARTMENT OF DEFENSE HAS FUNDED THIS SPECIFICATION AS A RESEARCH
PROJECT AIMED AT INTEROPERABILITY AND EASE IN IMPLEMENTATION OF BIOMETRIC
ACCESS CONTROLS FOR U.S. GOVERNMENT AND DOD COMPUTERS. IT DOES NOT REFLECT
U.S. GOVERNMENT ENDORSEMENTS OF HA-API COMPLIANT PRODUCTS OR ENDORSEMENT
OF THIS SPECIFICATION OVER OTHER INDUSTRY GENERATED BIOMETRIC API STANDARDS.

[DTIC QUALITY m&Ecm) 1

22 April 1998

fVQ x 9s-(i- a^Mö

Interface Specification
HA-API,Ver2.0

Comments

Comments on the Human-Authentication API may be sent to:

Major John Colombi, Ph.D., USAF
U.S. Biometrics Consortium
c/oNSA/R22, Suite 6516
9800 Savage Road
FortMeade,MD 20755-6516

or emailed to:

j mcolom@alpha.ncsc.mil

22 April 1998

Interface Specification III
HA-API,Ver2.0

Table of Contents

1.0 Scope 1

1.1 Purpose 1

1.2 Background 1

1.3 Overview 2
1.3.1 Identification & Authentication 2
1.3.2 Biometrics 3
1.3.3 Windows-NT 3
1.3.4 Enrollment 3
1.3.5 Matching 4
1.3.6 Philosophy 5

2.0 Architecture 8

3.0 Functions 11

3.1 Enrollment 11

3.2 Matching 12

4.0 API Definitions 13

4.1 Biometrie Technology Functions 14
4.1.1 EnumBioTechnology 14
4.1.2 GetBioTechnology 15
4.1.3 ReleaseBioTechnology 15

4.2 Biometrie Authentication Functions 16
4.2.1 HAAPICapture 16
4.2.2 HAAPIProcess 17
4.2.3 HAAPIVerify 18
4.2.4 HAAPILiveVerify 20
4.2.5 HAAPIEnroll 22
4.2.6 HAAPIUpdate 25
4.2.7 HAAPIIdentify 27

4.3 Biometrie Utility Functions 27

22 April 1998

Interface Specification IV
HA-API,Ver2.0

4.3.1 HAAPIFree 27
4.3.2 HAAPIInformation 28
4.3.3 HAAPIBioProperties 30

5.0 Service Provider Interface 32

5.1 Description 32
5.1.1 BUID 33
5.1.2 Asynchronous Operation 34
5.1.3 Authentication of BSP module 34
5.1.4 ANSI vs. UNICODE 34

5.2 User Interface 34

5.3 The Enrollment Wizard 35
5.3.1 Exported Enrollment Function 35

5.4 Update Enrollment 39
5.4.1 Exported Update Function 39

5.5 Standard Capture Screen 40
5.5.1 Exported Capture Function 41

5.6 Processing Interface 42
5.6.1 Exported Process Function 42

5.7 Verify Interface 43
5.7.1 Exported Verify Function 43

5.8 LiveVerify Interface 45
5.8.1 Exported Live Verify Function 45

5.9 Free Memory 47
5.9.1 Exported Free Function 48

5.10 Technology Specific Parameters 48
5.10.1 Exported Information Function 48

5.11 Standard Biometrie Properties Screen 50
5.10.1 Exported Biometrie Properties Function 50

6.0 Structures 52

6.1 Raw Biometrie Data Structure 52

6.2 Biometrie Identifier Record Structure 53

6.3 HA-API Header Structure 54

6.4 Biometrie Technology Structure 56

6.5 BUID Structure 56

22 April 1998

Interface Specification
HA-API,Ver2.0

6.6 Scoring Record Structure

6.7 Scoring Data Structure

6.8 Threshold Record Structure

6.9 Threshold Data Structure

6.10 Screen Attributes Structure

6.11 Enrollment Pages Structure

57

58

59

60

61

62

7.0 Sample message flows 63

7.1 Enrollment 63
7.1.1 New Enrollment 63
7.1.2 Update Enrollment 64
7.1.3 Batch Enrollment 65

7.2 Verification 66
7.2.1 Normal Verify 66
7.2.2 Live Verify 67
7.2.3 Verify with Update 68

8.0 References 69

9.0 Glossary 70

9.1 Acronyms 70

9.2 Definitions 71

Appendix A - Function Prototypes 72
Appendix B - Defines 74
Appendix C - Enumerated Types 75
Appendix D - C++ Classes 76
Appendix E - Error Codes, BUIDs and GUIDs 77
Appendix F - Scores and Thresholds 79
Appendix G - Sample Screens 81

Enrollment Capture Screen 81
Dialog Box 82
Message Box 82

22 April 1998

Interface Specification
HA-API,Ver2.0

VI

REVISION HISTORY

Revision Date of Issue Revision Summary-
1.0 27 Aug 97 Baseline
1.01 24 Oct 97 Unicode strings, HAAPI function names
1.02 21Nov97 Vendor independent
1.03 30 Dec 97 Incorporate mods from pilot implementation:

Add function - HAAPIFree
Add parameter - IpScreenAttribs
Add parameter - lpPages
Restructure error codes

Break out Biometrie Utility function as category
Differentiate API from pilot implementation

1.04 2 Apr 98 Incorporate changes agreed at 22 Jan 98 HA-API Steering
Group meeting:

Add function - HAAPI Update
Add function - HAAPIBioProperties
Added Score/Threshold Structure and discussion
Added support for model adaptation in verify functions
Added parameters to several functions to add flexibility
Added several clarifying notes
Added GUID / Error Code Description
Additional sample flows

2.0 22 Apr 98 Feedback from Steering Group - grammatical changes only

22 April 1998

Interface Specification
HA-API,Ver2.0

HlffÄÄ^^^^BBSÄ®

1.0 Scope

1.1 Purpose

The purpose of this document is to define a generic human authentication - application
programming interface (HA-API) that can be used to interface computer software
applications to a set of distinct biometric technologies for user authentication.

1.2 Background

There is interest in the Department of Defense in applying biometrics to the broad area of
computer security. One specific area that biometrics can be utilized is user identification
and authentication (I&A).

Providing strong user authentication has long been a dilemma for information systems
security professionals. Many excellent mechanisms exist today to authenticate one end of
a communications link or network to the other. However, these peer-entity authentication
mechanisms fail to perform the final step - user authentication. Without strong user
authentication, a user has little assurance that the intended recipient actually is at the other
end of the communications path.

To accelerate the commercial development of applications that use biometrics for positive
identification purposes, it was determined that a generic biometric API was required.
Such an API would allow a common set of instructions to be used to integrate a wide
range of biometric technologies to many different applications, including
computer/network I&A.

To meet the goal of expanding the use of biometrics by allowing for the interchangeability
of biometric technologies within a broad range of applications, a two part project was
conceived:

1. Define a generic biometric API that can be used to interface a computer
software application to a set of various biometric technologies

2. Demonstrate the viability of this API by extending a commercial product,
using at least 2 different biometric technology engines, as a proof of concept.

A standard, generic API is needed within the biometric industry for a number of reasons.

22 April 1998

Interface Specification ^
HA-API,Ver2.0

One of the inhibitors to the widespread adoption of biometrics has been the hesitancy of
system integrators to get "locked in" to a single biometric technology, vendor, or product.
Some undergo extensive evaluations to be sure they pick the right biometric, and others
adopt a "wait and see" approach. A standard API would allow an integrator to go
forward with a tentative selection, programming to the API. Should he later decide that
another biometric would be more suitable, it could be substituted with minimal changes to
the calling application. In addition to allowing substitution of biometrics, a common API
would also provide for leveraging of a single biometric technology across multiple
applications as well as allowing one application to integrate multiple biometric
technologies using the same interface.

A proof-of-concept was performed which implemented HA-API within a commercial
network authentication product with multiple biometric technologies in a Windows-NT
environment. This implementation of the HA-API interface successfully completed beta
testing in January 1998 and successfully demonstrated the viability of the API.

The HA-API was initially published for public comment on 21 Nov 97 as Ver 1.02. On 22
Jan 98, a HA-API Steering Group was formed and met to discuss comments,
enhancements, and support for HA-API as an emerging standard. As a result of the inputs
compiled at this meeting, this current version was generated.

1.3 Overview

1.3.1 Identification & Authentication

One of the basic methods used to maintain the security of a computer or network system
is to verify the identity of the user - ensuring that the user is who he or she claims to be.
Reliable authentication mechanisms are critical to the security of any automated
information system as well as other access control systems. If the identity of legitimate
users can be verified with an acceptable degree of accuracy, those attempting to gain
access without proper authorization can be denied permission to use the system. Once
verified, access control techniques can be applied to mediate that user's access to specific
system resources. In addition, the user's actions while using the system can be audited.

There are three (3) generally accepted methods for performing user authentication. These
are based on:

a. Something the user KNOWS (such as a password)

b. Something the user POSSESSES (such as a card/badge, called tokens)

c. Something the user IS (a physical characteristic, or biometric, such as a
fingerprint)

22 April 1998

Interface Specification *
HA-API,Ver2.0

These may be used independently or in conjunction with one another, to further increase
the security level of the system.

Passwords. This is the most commonly used authentication mechanism today. However,
passwords can be compromised in many ways - they can be forgotten, written down,
guessed, stolen, "cracked", or shared.

Tokens. The identity of a user can be proven by requiring that the user demonstrate
possession of a physical object that is unique to that user, or group of users. These are
usually encoded with information used in the authentication process. Tokens can be lost,
forgotten, stolen, given away, or duplicated.

Biometrics. Authentication can be accomplished by measurement of a unique biological or
behavioral feature of the user to verify identity through automated means.

1.3.2 Biometrics

Biometrie identification exploits the universally recognized fact that certain biological or
behavioral characteristics reliably distinguish one person from another. Some examples of
these characteristics are speech patterns, DNA, retinal patterns, the topography of the
face, and the patterns of friction ridges on an individual's fingertip. A biometric
characteristic is tightly bound to an individual. It can't be lost, forgotten, borrowed, stolen
and duplicated, or otherwise compromised in the same manner as with ID cards,
passwords, or PINs.

1.3.3 Windows-NT

Windows-NT is a graphical user interface (GUI) based computer operating system
developed by Microsoft Corporation primarily for use on IBM-compatible PCs and
servers. It supports a networked, client/server environment. It contains many security
features not available in other commercially available operating systems. The Windows
NT 3.51 release has been certified to the C2 level of security, requiring minimum user log-
in procedures, auditing of security-relevant events, and resource (users, processes, and
data) isolation. (See DoD 5200.28-STD, under Section 8.0, References, for further
information on C2 security requirements.)

1.3.4 Enrollment

Before a biometric can be used to verify an identity, the user must be "enrolled" in the
system. That is, their biometric identifier or template, along with their user ID, must be
entered into the database of authorized users. A system/security administrator normally
performs this function in order to protect the integrity of the authentication database.

22 April 1998

Interface Specification
HA-API,Ver2.0

In a password protected system, the system administrator or system security administrator
(SA/SSA) would either allow the user to select or would assign the user ID and password.
In a biometric authentication system, the biometric identification data for the user must be
captured and stored. This entails capturing the raw biometric data, converting it to a
biometric identifier or template, and storing it. For example:

For a finger imaging system, one or more fingerprints are scanned one or more
times using a finger image scanner device and the resulting digital fingerprint image
is used to generate a Finger Image Identifier Record (FUR).

For a facial recognition system, all or part of the face is 'photographed' using a
video or other type of photo camera. One or more images may be required. These
images are used to generate the template(s), that may contain either extracted
feature information or digital image data.

For a speaker verification system, samples of the users speech, usually repeating
predetermined phrases, are captured using a microphone or telephone handset.
Speech signature parameters are calculated.

Enrolled biometric identifier data is stored in a protected authentication database. In a
networked environment, this is usually located at the primary domain controller (PDC) or
other authentication server.

1.3.5 Matching

To determine if one biometric sample "matches" another biometric sample, they must be
compared using a unique algorithm. Generally, the result of this comparison is a "score",
indicating the degree to which a match exists. This score is then compared to a pre-set
threshold to determine whether or not to declare a match. The comparison is performed
using the biometric identifier or template, as opposed to the raw biometric data that is
captured.

Two types of matching are generally defined. These are 'Verification' and 'Identification'.

Verification is a one-to-one (1:1) matching of a single biometric sample set (biometric
identifier record) against another. Generally, the first sample is newly captured and the
second is the enrolled identifier on file for a particular subject. The file sample is retrieved
from the database based on a unique subject identifier (such as a User ID). In a user
authentication environment, a score exceeding the threshold would return a 'match',
resulting in the authentication of the user. A score below the threshold would return a
'no-match', resulting in the denial of access.

22 April 1998

Interface Specification 5
HA-API,Ver2.0

Identification is a one-to-many (1 :N) matching of a single biometric sample set against a
database of samples, with no declared identity required. The single biometric is generally
the newly captured sample and the database contains all previously enrolled samples.
Scores are generated for each comparison, and an algorithm is used to determine the
matching record, if any. Generally, the highest score exceeding the threshold results in a
match. In an authentication environment, if a match is found against any of the authorized
users, access is granted.

A third type, sometimes referred to as 'one-to-few' matching is performed by executing a
series of 1:1 matches against a small sample set. In a user authentication environment
using finger imaging technology, the user's finger image identifier is compared to each of
the few authorized users within this group. Access is granted if any of the one-to-one
matches is positive.

1.3.6 Philosophy

The approach herein adopted for the human authentication API is to hide to the degree
possible, the unique aspects of individual biometric types and particular vendor
implementations, products, and devices, while providing a 'toolbox' of biometric functions
that can be used within a number of potential software applications. Access to this
toolbox would be through a set of standard interfaces. Theoretically, biometric
components supplied by vendors conforming to this interface specification could then be
used within any application also developed to this HA-API definition.

This API is designed for use by both the application developer and the biometric
technology developer. To make the integration of the technology as straight-forward and
simple as possible (and thus enhancing its commercial viability), the approach taken was to
hide or encapsulate to the extent possible the complexities of the biometric technology.
This approach also serves to extend the generality of the interface to address a larger set
of potential biometric technologies and applications thereof.

A broad range exists as to the level of detail to which such an interface specification could
be defined. This range extends from the top-level functions of "Enroll" and "Verify" to
the lowest level subfunction involving device manipulations. A level below the top-level
functions was selected as being the most useful while remaining the most generic. It is
believed that this level will provide the needed commonality without reducing all biometric
technologies to the lowest common denominator. That is, without neutralizing
competitive features offered by a vendor or product.

This specification is designed to support multiple biometrics, both singularly and when
used in a combined or cascaded manner. This is desirable to enhance flexibility to support
such implementations as multiple factor authentication.

22 April 1998

Interface Specification 6
HA-API,Ver2.0

For this version of HA-API, only one-to-one verification type matching is supported by
the biometric API (and thus, so is one-to-few). One-to-many identification matching
functions are not generally required in an authentication environment and pose additional
challenges and considerations (such as accuracy, response time, adjudication of multiple
candidates, and database synchronization issues) that would detract from the current
effort. However, the specification was written so as not to preclude the addition of one-
to-many identification matching in the future.

The issue of matching scores, threshold settings, and quality scores/thresholds are at this
point vendor specific and generally not required for most 1:1 applications and integrators.
However, there are some sophisticated developers and some unique applications where
this functionality would be useful. Therefore, within the HAAPIInformation function,
explicit variables have been defined to allow the setting and reading of these values. Note
that the interpretation of these values continue to be vendor specific.

In addition to supporting operational system applications, this API could also be used
within non-operational environments (e.g., to support biometric testing) as well.
However, the Information function described above would likely be invoked to provide
for the condition setting and detailed results usually necessary for any type of rigorous
testing. Vendors are encouraged to provide a test mode or toolkit either separately or as
an optional function.

In defining the approach, the physical location where the verification function takes place
and the location of the identifier database is also a consideration. This API supports either
local (workstation) or central (server) verification. To be most generic and to support a
client/server environment, it is recommended that the biometric database be located at the
central server. This is the cleanest implementation and supports either local or server
verification.

As each system and application will employ different database types and designs, database
related functions (such as the addition, deletion, and retrieval of biometric data) have thus
been omitted from this API specification.

It is the intent that this API be as open as possible, both in terms of an open systems
architecture and accommodation of as wide a range as possible of biometric products and
vendors and a broad range of biometric applications. It is not intended to be platform or
device dependent. For convenience, and to support the first prototype implementation,
the software environment is currently defined in terms of a Win32 client/server
environment using a "C" language based.

Use of encryption to protect biometric and other authentication data during transmission
and storage is highly encouraged. No explicit cryptographic functions/parameters are
included within this API for several reasons. First, since the application is responsible for
data storage, it should be responsible for encrypt this data at all points where it may be
vulnerable in the computer, when stored, and when transmitted. For data transmitted from

22 April 1998

Interface Specification '
HA-API,Ver2.0

a biometric device or stored therein, this is the responsibility of the BSP vendor.
Secondly, cryptographic API's already exist which can provide the necessary encryption
capability.

In order for an application to identify and distinguish between installed biometric
technologies, each vendor/product pair is to be identified by a Biometric Unique Identifier
(BUID). Vendors generate their own unique BUIDs using the Globally Unique Identifier
(GUJD) creation methods, which ensures that no two 128-bit values is generated twice.
Note that once a BUID is generated for a vendor/product pair (i.e., a specific BSP), it is
fixed for that product, although a vendor may choose to use a new BUID for a major
revision to that product, at their discretion.

22 April 1998

Interface Specification
HA-API,Ver2.0

8

2.0 Architecture
This HA-API specification defines interfaces at two levels. The first is the application
program interface (API). These functions are called by the software application that will
use the biometrics for a particular purpose. The second is the service provider interface
(SPI). These functions are provided by the biometric service provider (BSP). Translation
from the SPI to the API is provided by the HA-API runtime layer. This is depicted in the
figure below.

API HA-API Compliant Application

SPI

HA-API Runtime Layer

API Subsystem

Module Mgmt Subsystem
Table Mgmt Subsys

Registry Mgmt Subsys

BSP Module 1 BSP Module 2 BSP Module 3

The HA-API runtime is free software currently available from NRI. Alternatively, the
biometric technology vendor or the system integrator may develop it, if desired. When
used in a client/server architecture, the implementation would be accomplished as shown
below:

CLIENT SERVER

HA-API Compliant Application HA-API Compliant Application

HA-API Runtime Layer HA-API Runtime Layer

BSP
Module 1

BSP
Module 2

BSP
Module 3

BSP
Module 1

BSP
Module 2

BSP
Module 3

22 April 1998

Interface Specification 9
HA-API,Ver2.0

The intended system architecture integrating HA-API includes the following:

• Standalone or client/server implementation

• Open System environment

• Local, central, or distributed biometric database

• Support for local or central matching

• Support for multiple biometrics (individually)

• Support for hybrid implementation (in combination)

The salient points of the HA-API architecture are:

(a) Application will use the HA-API interface functions to select/configure the
specific biometric technology used for user authentication process.

(b) The HA-API interface will include API functions to configure the specific required
biometric capture device and the associated biometric engine for the biometric
authentication process.

(c) The low level device driver software for communicating with the biometric devices
and the biometric engine software will be part of the software package provided
by the specific biometric vendor.

(d) Application will be responsible for maintaining the specific biometric Identifier
database along with User ID related information in the NT Database for the user
authentication process.

The primary design objective is to provide multiple biometric based user authentication.
This design, will also provide the following operational advantages/enhancements:

• Enhance Interoperability

- Flexibility to upgrade and/or switch biometric technology keeping the same
application.

- Flexibility to upgrade and/or switch biometric vendor (for a specific biometric
technology) keeping the same application.

• Enhance Security /Reduce Risk

- Ability to add /combine multiple biometric technologies to provide increased
security.

- Use of multiple combined biometric technologies to make the system work for
universal population and also reduce false accept/false reject errors.

22 April 1998

Interface Specification 10
HA-API,Ver2.0

Standard Biometrie human authentication-API interface.

- HA-API will facilitate the integration of a multitude of biometric technologies
for user authentication.

- Application will have the flexibility to add/switch/or combine biometric
technologies easily without requiring a major software redesign.

22 April 1998

Interface Specification ' '
HA-API,Ver2.0

3.0 Functions

The two top-level biometric functions for an authentication or other application are
enrollment and verification matching, as described in previous sections. To perform these
top-level function, subfunctions are defined that together, when called as API elements,
execute these functions. The subfunctions are listed below. API specifications are
provided in Section 4.0.

3.1 Enrollment

The following functions are used to perform the biometric enrollment function:

Initialize/release biometric

EnumBioTechnology
GetBioTechnology
ReleaseBioTechnology

Enroll biometric data

HAAPIEnroll
and optionally

HAAPIUpdate

Store biometric data

Application dependent

Get or set technology data/parameters (as needed)

HAAPIInformation

Memory De-allocation

HAAPIFree

22 April 1998

Interface Specification * ^
HA-API,Ver2.0

3.2 Matching

The following functions are used to perform the biometric matching function. Only
verification (1:1 matching) is supported by this version of the HA-API.

Initialize biometric, if not previously performed:

EnumBioTechnology
GetBioTechnology
ReleaseBioTechnology

Capture biometric data:

HAAPICapture

Calculate biometric template:

HAAPIProcess

Perform verification:

HAAPIVerify
or

HAAPILiveVerify

Get or set technology data/parameters (as needed)

HAAPIInformation

Memory De-allocation

HAAPIFree

22 April 1998

Interface Specification
HA-API,Ver2.0

13

Ttarsrasrrrr?:

4.0 API Definitions

The philosophy underlying Human Authentication-API (HA-API) interface design is to
define the minimum set of generic API functions that will be required for providing
multiple 1:1 biometric authentication capability for a HA-API compliant application. This
interface design assumes that all of the low level functions (including the initialization of
the data capture hardware boards for the capture of the biometric input data) and the
actual processing /matching functions are handled internally within the biometric vendors'
software libraries and engines.

Based on this assumption, the HA-API interface needs to support the following basic
biometric identification functions that are common to all biometric technologies:

(a) Capture of biometric input data from the user.

(b) Creation of biometric identifier data used for the authentication function.

(c) Matching of the user's captured biometric identifier data against the stored
biometric identifier data for the biometric authentication function.

Storage of the biometric identifier data is considered an application function.

A set of API functions has been defined for the HA-API interface for supporting multiple
biometric authentication capability for the user authentication process. The initial HA-API
interface is designed to provide a generic API interface that can support a variety of
biometric technologies. A detailed description of the proposed API functions is provided
in the remainder of this section. The API interface is designed to support the storage of
multiple biometric identifier records for given user to provide increased system accuracy.

The HA-API is broken into three sections: Biometric Technology functions, Biometric
Authentication functions, and Biometric Utility functions. The Biometric Technology
functions provide the ability to specify Biometric Technologies. The Biometric
Technology is later used in processing and verifying biometric data. The Biometric
Authentication functions provide the ability to capture, process and match Biometric Data
retrieved from different devices and using different technologies. The Biometric Utility
functions provide various tools to facilitate programming, including access to vendor
specific options.

22 April 1998

I nterfece Specification • **
HA-API,Ver2.0

4.1 Biometrie Technology Functions

4.1.1 EmimBioTechnology

HAAPIERROR EnumBioTechnology(LPBIOTECH pBioTechEnum,
DWORD dwBuf,
LPDWORD pdwNeeded,
LPDWORD pdwReturned)

Description:

This function enumerates the biometric technologies installed on a
system. It identifies which specific biometric technologies are available for
use by the application.

Parameters:

pBioTechEnum - A pointer to an array of Biometric Technology
structures. For more information on Biometric Technology structures,
refer to Section 6.0, Structures. This parameter can be NULL.

dwBuf - Specifies the number of elements in the array pointed to by
pBioTechEnum.

pdwNeeded - Pointer to a value that receives the number of
Biometric Technology structures copied if the function succeeds or the
number of strucutures required if dwBuf is too small.

pdwReturned - Pointer to a value that receives the number of
Biometric Technology structures that the function returns in the array to
which pBioTechEnum points.

Return Value:

Upon success, this function returns a HAAPINOERROR. If the
function fails, it returns a HAAPI_ERROR. To get extended error
information, call the Win32 API, GetLastError.

Remarks:

If pBioTechEnum is NULL, the function will return the number of
Biometric Technologies installed on the PC in the parameter pdwNeeded.
This value can be used to allocate the size of the array pointed to by
pBioTechEnum which can then be used in a subsequent call to
En umBio Technology.

22 April 1998

Interface Specification 15
HA-API,Ver2.0

4.1.2 GetBioTechnology

HBT GetBioTechnology(BUID buidBioTechnology)

Description:

This function is used to initialize a biometric technology. The
resulting handle to the biometric technology can later be used by the
Biometric Authentication functions, HAAPIProcess and HAAPIVerify.

Parameters:

buidBioTechnology - A unique biometric identifier for a specific
technology. A list of available BUID's and their description can be
retrieved using EnumBioTechnology.

Return Value:

Upon successful initialization of a Biometric Technology,
GetBioTechnology returns a Biometric Technology Handle. If this
function fails, this function HAAPI_ERROR. To get extended error
information, call the Win32 API, GetLastError.

Remarks:

This Biometric Technology Handle must be released using
ReleaseBioTechnology.

4.1.3 ReleaseBioTechnology

HAAPIERROR ReleaseBioTechnology(HBT hbtBioTechnology)

Description:

This function frees a handle created by GetBioTechnology. Once
released, to use the biometric technology again requires that the
GetBioTechnology be invoked.

Parameters:

22 April 1998

Interface Specification 1D
HA-API,Ver2.0

hbtBioTechnology - a handle to a Biometrie Technology.

Return Value:

Upon success, this function returns a HAAPI_NOERROR. If the
function fails, it returns a HAAPI_ERROR. To get extended error
information, call the Win32 API, GetLastError.

4.2 Biometrie Authentication Functions

4.2.1 HAAPICapture

HAAPIERROR HAAPICapture(HBT hbtBioTechnology,
LPSCREENATTRIBS IpScreenAttribs,
LPRAWBIODATA IpRawBioData)

Description:

This function captures Raw Biometrie Data, specified by the
Biometrie Technology passed as parameters. The application is presented
with a modal capture dialog box that varies according to the technology
being used. Upon successful capture, a Raw Biometrie Data structure is
filled with appropriate data. Depending on the technology, this data has
unique characteristics. It can, in speaker verification for instance, be a
series of speech utterances.

Parameters:

hbtBioTechnology - a handle to a Biometrie Technology. This
handle is returned by a call to GetBioTechnology.

IpScreenAttribs - a pointer to a Screen Attributes Data structure.
This contains information for dialog box placement. If this parameter is
NULL, the vendor default screen placement values will be used by the
vendor module. For more information on Screen Attributes Data
structures, see Section 6.0, Structures.

NOTE: For applications that do not include a GUI (e.g., embedded
applications) IpScreenAttribs will be set to null.

22 April 1998

Interface Specification 17
HA-API,Ver2.0

IpRawBioData - a pointer to a Raw Biometrie Data structure that
is filled upon successful capture. For more information on Raw Biometrie
Data structures, see Section 6.0, Structures.

Return Value:

Upon successful capture, HAAPICapture returns
HAAPI_NOERROR. If this function fails, this function returns
HAAPI_ERROR. To get extended error information, call the Win32 API,
GetLastError.

Remarks:

This function allocates the raw data pointed to by the IpRawData
member of the Raw Biometrie Data structure. It is the application
programmers responsibility to free this allocated memory using the function
HAAPIFree.

The size of the data allocated is indicated by the ulSize member of
the Raw Biometrie Data structure.

4.2.2 HAAPIProcess

HAAPIERROR HAAPIProcess(HBT hbtBioTechnology,
LPRAWBIO IpRawBioData,
LPBIR IpBiolDRec)

Description:

This function processes the raw biometric data captured via a call
to HAAPICapture and extracts a unique Biometric Identifier Record. This
Raw Biometric Data contains raw data and data size. The raw data differs
per technology, for example: Finger Imaging could be - a raw grayscale
finger image; Facial Recognition could be - a video image of a face;
Speaker Verification could be - a digitized speech waveform. The
resulting Biometric Identifier Record contains processed data and data size.
The processed data also differs per technology, for example: Finger
Imaging could be - a finger image identifier record; Facial Recognition
could be - a facial image or feature data; Speaker Verification could be - a
spectral representation.

Parameters:

22 April 1998

18 Interface Specification ■"
HA-API,Ver2.0

hbtBioTechnology - a handle to a Biometrie Technology. This
handle is returned by a call to GetBioTechnology.

IpRawBioData - a pointer to a Raw Biometrie Data structure. For
more information on Raw Biometrie Data structures, see Section 6.0,
Structures.

IpBiolDRec - a pointer to a Biometrie Identifier Record. For more
information on Biometrie Identifier Record structures, see Section 6.0,
Structures.

Return Value:

Upon successful extraction of a Biometrie Identifier Record,
HAAPIProcess returns HAAPI_NOERROR. If this function fails, this
function returns HAAPI_ERROR. To get extended error information, call
the Win32 API, GetLastError.

Remarks:

This function allocates the processed data pointed to by the
IpBioData member of the Biometrie Identifier Record structure. It is the
application programmers responsibility to free this allocated memory using
the function HAAPIFree.

The size of the data allocated is indicated by the ulSize member of
the Biometrie Identifier Record structure.

4.2.3 HAAPIVerify

HAAPIERROR HAAPIVerify(HBT hbtBioTechnology,
LPBIR IpSampleBIR,
LPBIRIpStoredBIR,
LPBIR IpAdaptedBIR,
LPBOOL IpbResponse)

Description:

This function performs a verification (1-to-l) match against two
Biometrie Identifier Records. The first BIR is the sample biometric
captured at time of verification. The second stored BIR is retrieved from a

22 April 1998

Interlace Specification 1"
HA-API,Ver2.0

database for verification. If the stored BIR is modified as a result of the
verification, the modified or adapted BIR is returned.

Parameters:

hbtBioTechnology - a handle to a Biometrie Technology. This
handle is returned by a call to GetBioTechnology.

IpSampleBIR - a pointer to the Biometrie Identifier Record
structure in question. For more information on Biometrie Identifier Record
structures, see Section 6.0, Structures.

IpStoredBIR - a pointer to the original Biometrie Identifier Record
structure stored at enrollment. For more information on Biometrie
Identifier Record structures, see Section 6.0, Structures.

IpAdaptedBIR - a pointer to the an adapted Biometrie Identifier
Record structure, based upon the original BIR stored at enrollment and the
sample BIR taken for verification. This parameter can be NULL if an
adapted BIR is not desired. For more information on Biometrie Identifier
Record structures, see Section 6.0, Structures.

IpbResponse - a pointer to a Boolean value indicating
(TRUE/FALSE) indicating whether the BIRs matched or not.

Return Value:

Upon successful execution, HAAPIVerify returns
HAAPI_NOERROR. To determine if the BIRs matched, examine the
parameter, IpbResponse. If this function fails, this function returns
HAAPI_ERROR. To get extended error information, call the Win32 API,
GetLastError.

If an adapted BIR is desired, check GetLastError to determine if
an adaptation has been performed. If so, it will be set to
HAAPI_ADAPTEDBIR. If set, check IpAdaptedBIR for the location of
the adapted BIR data.

In the event that adaptation is not supported for a given biometric,
HAAPI ADAPTATIONNOTSUPPORTED is returned by GetLastError.

Remarks:

22 April 1998

Interface Specification 20
HA-API,Ver2.0

If a Biometrie Identifier Record is passed in as the parameter
IpStoredBIR, and the match is successful, HAAPIVerify may attempt to
adapt the enrolled BIR with information taken from the sample BIR.
(Some BSPs may adapt and others may not). The resulting IpAdaptedBIR
should now be considered an optimal enrollment, and be saved to the
enrollment database. (It is up to the application whether or not it uses or
discards this data). It is important to note that adaptation may not occur in
all cases.

In the event of an adaptation, this function allocates the data
pointed to by the IpBioData member of the Biometrie Identification Data
structure. It is the application programmer's responsibility to free this
allocated memory using the function HAAPIFree.

The ulSize member of the Biometrie Identification Record structure
indicates the size of the data allocated.

The Data stored in the Biometrie Identification Record structure
can be a concatenation of multiple identifiers.

Setting of verification thresholds or returning of verification
matching scores is provided using the HAAPIInformation function.

4.2.4 HAAPILiveVerify

HAAPIERROR HAAPILiveVerify(HBT hbtBioTechnology,
LPSCREENATTRIBS IpScreenAttribs,
LPBIRIpStoredBIR,
LPBIR IpAdaptedBIR,
DWORD dTimeout,
LPBOOL IpbResponse)

Description:

This function encapsulates the functionality of HAAPICapture,
HAAPIProcess, and HAAPIVerify. It is intended to be used for
technologies that perform continuous capture, process, and verification
until a match is found or a timeout is reached. HAAPILiveVerify can also
be used as a convenience function, tying the three functions commonly
called in succession.

Parameters:

22 April 1998

Interface Specification 21
HA-API,Ver2.0

hbtBioTechnology - a handle to a Biometrie Technology. This
handle is returned by a call to GetBioTechnology.

IpScreenAttribs - a pointer to a Screen Attributes Data structure.
This contains information for dialog box placement. If this parameter is
NULL, the vendor default screen placement values will be used by the
vendor module. For more information on Screen Attributes Data
structures, see Section 6.0, Structures.

NOTE: For applications that do not include a GUI (e.g., embedded
applications) IpScreenAttribs will be set to null.

IpStoredBIR- a pointer to the original Biometrie Identifier Record
structure stored at enrollment. For more information on Biometrie
Identifier Record structures, see Section 6.0, Structures.

IpAdaptedBIR - a pointer to the an adapted Biometrie Identifier
Record structure, based upon the original BIR stored at enrollment and the
sample BIR taken for verification. This parameter can be NULL if an
adapted BIR is not desired. For more information on Biometrie Identifier
Record structures, see Section 6.0, Structures.

dTimeout - a double specifying the timeout value (in milliseconds)
for the Live Verify. If this timeout is reached before a valid biometric is
captured and verified, the function returns an error. This value can be any
positive number or HAAPI_NOTIMEOUT.

IpbResponse - a pointer to a Boolean value indicating
(TRUE/FALSE) indicating whether the BIRs matched or not.

Return Value:

Upon successful capture and match, HAAPILiveVerify returns
HAAPI_NOERROR and sets the parameter IpbResponse to TRUE. If
this function fails or does not successfully match in the time specified, this
function returns HAAPI_ERROR. To get extended error information, call
the Win32 API, GetLastError.

If an adapted BIR is desired, check GetLastError to determine if
an adaptation has been performed. If so, it will be set to
HAAPI_ADAPTEDBIR. If set, check IpAdaptedBIR for the location of
the adapted BIR data.

22 April 1998

Interface Specification Zä
HA-API,Ver2.0

In the event that adaptation is not supported for a given biometric,
HAAPI_ADAPTATIONNOTSUPPORTED is returned by GetLastError.

Remarks:

If a Biometric Identifier Record is passed in as the parameter
IpStoredBIR, and the match is successful, HAAPILiveVerify may attempt
to adapt the enrolled BIR with information taken from the sample BIR.
(Some BSPs may adapt and others may not). The resulting IpAdaptedBIR
should now be considered an optimal enrollment, and be saved to the
enrollment database. (It is up to the application whether or not it uses or
discards this data). It is important to note that adaptation may not occur in
all cases.

In the event of an adaptation, this function allocates the data
pointed to by the IpBioData member of the Biometric Identification Data
structure. It is the application programmer's responsibility to free this
allocated memory using the function HAAPIFree.

The ulSize member of the Biometric Identification Record structure
indicates the size of the data allocated.

The Data stored in the Biometric Identification Record structure
can be a concatenation of multiple identifiers.

Setting of verification thresholds or returning of verification
matching scores is provided using the HAAPIInformation function.

4.2.5 HAAPIEnroll

HAAPIERROR HAAPIEnrolI(HBT hbtBioTechnology,
DWORD dwEnrollType,
LPSCREENATTRIBS IpScreenAttribs,

LPRAWBIODATA IpRawBioData,
LPBIR IpBiolDRec,
LPENROLLMENTPAGES IpPages)

Description:

This function captures and processes Raw Biometric Data,
specified by the Biometric Technology passed as parameters. This function
differs from HAAPICapture because it encapsulates the entire process of
enrollment (i.e., capture, process). Batch enrollment is also supported. A
wizard provides the means for the application to ensure a successful

22 April 1998

Interface Specification *«
HA-API,Ver2.0

enrollment. The application is presented with a modal wizard dialog box,
that varies according to the technology being used, that guides the user
through the various steps of enrollment.

The HAAPIUpdate function (see Section 4.2.6) is used to update a
previously enrolled user by overwriting, appending, or averaging the old
with the new data (the specific update scheme being technology
dependent).

The wizard provided by the HAAPEnroll function is extendable.
Through the use of the Win32 Common Control Property Page and the
PSH_WIZARD flag, the wizard can easily have pages added to it. The
parameter IpPages provides the structure for the developer to add pages.

Parameters:

hbtBioTechnology - a handle to a Biometrie Technology. This
handle is returned by a call to GetBioTechnology.

dwEnrollType - a value which indicates what data is to be returned
(i.e., what type of enrollment is to be performed) and is a composite set of
subflags having the following meaning:

Value Meaning
ENROLL_CAPTURE If included, indicates that a capture

will be performed.
ENROLL_BIR If included, indicates that a BIR will

be returned.
ENROLL_RAW If included, indicates that raw data

will be returned.

IpScreenAttribs - a pointer to a Screen Attributes Data structure.
This contains information for dialog box placement. If this parameter is
NULL, the vendor default screen placement values will be used by the
vendor module. For more information on Screen Attributes Data
structures, see Section 6.0, Structures.

NOTE: For applications that do not include a GUI (e.g., embedded
applications) IpScreenAttribs will be set to null.

IpRawBioData - a pointer to a Raw Biometrie Data structure that
is filled upon successful capture. If this parameter is NULL, the Raw
Biometrie Data is discarded upon function return. If the pointer is valid, but
the IpRawData member of this structure is NULL, then the Raw Biometrie

22 April 1998

Interface Specification 24
HA-API,Ver2.0

Data from the enrollment is returned. For more information on Raw
Biometrie Data structures, see Section 6.0, Structures.

IpBiolDRec - a pointer to a Biometrie Identification Data structure
that is filled upon successful capture/process. This parameter can be
NULL. For more information on Biometrie Identification Data structures,
see Section 6.0, Structures.

IpPages - a pointer to an Enrollment Pages Data structure. This
parameter defines any additional pages that you would like to add to the
Enrollment Wizard. Pages can be added at the beginning or at the end of
the Wizard. Wizard pages are Win32 Common Control Property Pages
with the PSHWIZARD flag set. For more information about Property
Pages and the PSH_WIZARD flag, please refer to the Microsoft Platform
SDK, Wizard Property Sheets. For more information on Enrollment Pages
Data structures, see Section 6.0, Structures.

NOTE: For applications that do not include a GUI (e.g., embedded
applications) IpPages will be set to null.

Return Value:

Upon successful capture, HAAPIEnroll returns
HAAPI_NOERROR. If this function fails, this function returns
HAAPI_ERROR. To get extended error information, call the Win32 API,
GetLastError.

Remarks:

Storage of returned enrollment data (i.e. database, smart card, etc)
is the responsibility of the application program.

This function allocates the raw data pointed to by the IpRawData member
of the Raw Biometrie Data (IpRawBioData) structure and by the IpBioData
member of the Biometrie Identification data (IpBiolDRec) structure. It is
the application programmers responsibility to free this allocated memory
using the function HAAPIFree. The size of the data allocated is indicated
by the ulSize member of the Raw Biometrie Data and Biometrie
Identification Record structures.

HAAPIEnroll can function in several different fashions, depending
on the values included in the dwEnrollType parameter. Enrollment types
fall into the following four categories:

22 April 1998

Interface Specification 25
HA-API,Ver2.0

Standard Enrollment #1 - This is the most commonly used
enrollment type. It involves capturing the raw biometric data, processing
it, and returning the processed data in the form of a BIR. For the standard
enrollment #1, dwEnrollType would be:

ENROLL_CAPTURE | ENROLL_BIR.

Standard Enrollment #2 - This is the same as standard enrollment
#1, but this returns the newly captured raw biometric data as well as the
BIR. For the standard enrollment #2, dwEnrollType would be:

ENROLL_CAPTURE | ENROLL_RAW | ENROLL_BIR.

Batch Enrollment. Part 1 - This allows raw biometric data to be
captured for later processing and storage. It returns raw biometric data.
For the batch enrollment part 1, dwEnrollType would be:

ENROLL_CAPTURE | ENROLL_RAW.

Batch Enrollment, Part 2 - This performs the processing of
previously captured raw biometric. It returns a processed BIR. For the
batch enrollment part 2, dwEnrollType would be:

ENROLL_BIR.

To perform enrollment processing only (Batch Enroll, Part 2), the
application must pass in the previously captured raw biometric data via
IpRawBioData. This enrollment type typically requires no GUI.

NOTE: The data stored in the Biometric Identification Record structure
(IpBiolDRec) is technology dependent. See the BSP documentation for the
details of what is included in this structure.

4.2.6 HAAPIUpdate

HAAPIERROR HAAPIUpdate(HBT hbtBioTechnology,
LPRAWBIODATA IpOldRawBioData,
LPRAWBIODATA IpNewRawBioData,
LPBIR IpStoredBiolDRec,
LPBIR IpNewBiolDRec)

22 April 1998

Interface Specification *-b
HA-API,Ver2.0

Description:

This function performs various adaptation, reenrollment or updates
to previously enrolled/stored biometric data. All data collection must be
done previously through HAAPICapture or HAAPIEnroll. This function
provides the capability to receive raw biometric data. In addition, a
reenrollment may require the current stored BIR in order to create the new
one. Thus, this function extends the HAAPIProcess functionality. The
HAAPIUpdate may replace, append, or average the old with the new data
(the specific update scheme being technology dependent).

Parameters:

hbtBioTechnology - a handle to a Biometric Technology. This
handle is returned by a call to GetBioTechnology.

IpOldRawBioData - a pointer to a Raw Biometric Data structure.
For more information on Raw Biometric Data structures, see Section 6.0,
Structures.

IpNewRawBioData - a pointer to a recently captured Raw
Biometric Data structure either from a HAAPIEnroll or a
HAAPICapture. For more information on Raw Biometric Data structures,
see Section 6.0, Structures.

IpStoredBiolDRec - a pointer to a Biometric Identification Data
structure that has the previously stored enrollment that will be adapted by
this call to HAAPIUpdate. For more information on Biometric Identifier
Data structures, see Section 6.0, Structures.

IpNewBiolDRec - a pointer to a Biometric Identification Data
structure that is filled with the new updated/ refreshed/ adapted BIR For
more information on Biometric Identifier Data structures, see Section 6.0,
Structures.

Return Value:

Upon successful capture, HAAPIUpdate returns
HAAPI_NOERROR. If this function fails, this function returns
HAAPI_ERROR. To get extended error information, call the Win32 API,
GetLastError.

22 April 1998

Interface Specification *'
HA-API,Ver2.0

Remarks:

The size of the data allocated is indicated by the ulSize member of
the Raw Biometrie Data and Biometrie Identifier Record structures.

Note that as a minimum, the application must pass in the newly
captured raw biometric data (IpNewRawBioData) and the BSP must pass
back the new biometric identifier record (IpNewBiolDRec). The other data
(IpOldRawBioData and IpStoredBiolDRec) is set to null if unused. Use is
dependent on the biometric technology (see BSP documentation for
details).

4.2.7 HAAPIIdentify

This is a place-holder for a 1 :N search/match function to be potentially added into
future releases of this specification.

4.3 Biometric Utility Functions

4.3.1 HAAPIFree

HAAPIERROR HAAPIFree(HBT hbtBioTechnology,
LPVOID lpData)

Description:

This function releases memory that has been allocated through any
of the HAAPI Authentication functions

Parameters:

hbtBioTechnology - a handle to a Biometric Technology. This
handle is returned by a call to GetBioTechnology.

IpData - a pointer to the data member which was allocated through
one of the authentication functions.

Return Value:

Upon successful capture, HAAPIFree returns
HAAPI NOERROR. If this function fails, this function returns

22 April 1998

Interface Specification **»
HA-API,Ver2.0

HAAPI_ERROR. To get extended error information, call the Win32 API,
GetLastError.

Remarks:

This function MUST be used to free the memory allocated by any
of the Authentication functions. DO NOT pass in the full BIR or
RAWBIODATA structure. This function only expects the data member of
the structure.

4.3.2 HAAPIInformation

HAAPIERROR HAAPIInformation(HBT hbtBioTechnology,
long IVendorlnfo,
LPVOID IpData,
DWORD cbSize)

Description:

This function provides an interface for the application developer to
get and set information specific to a Biometrie Technology. It must also be
noted that vendors are only required to support a minimal set of constants
for the requested information parameter. Any parameters used outside of
this set are considered specific to the vendor and may not work across
multiple vendor applications.

Parameters:

hbtBioTechnology - a handle to a Biometrie Technology. This
handle is returned by a call to GetBioTechnology.

IVendorlnfo - a long integer constant defining the information being
retrieved or set.

IpData - a pointer to the variable that contains the data to be set or
will hold the data being retrieved.

cbSize - the size, in bytes, of IpData.

Return Value:

Upon successful capture, HAAPIInformation returns
HAAPI NOERROR. If this function fails, this function returns

22 April 1998

Interface Specification *•*'
HA-API,Ver2.0

HAAPI_ERROR. To get extended error information, call the Win32 API,
GetLastError.

Remarks:

All vendors must support the following constants:

Constant Data Type for IpData
HAAPI_MAJORVERSION long (read only)
HAAPI_MINORVERSION long (read only)
HAAPI_BUILDVERSION long (read only)
HAAPI_BUILDDATE long (read only - Julian date)
HAAPI_VENDORNAME LPTSTR (read only)
HAAPI_TECHNAME LPTSTR (read only)

Variable Data Type for IpData
HAAPI_GET_LAST_SCORE Scoring Record (read only)
HAAPI_SET_SYS_THRESHOLD Threshold Record (write)
HAAPI_GET_SYS_THRESHOLD Threshold Record (read)

Notes: 1) 'read only'is from the perspective of the application.
2) Variable definitions are found in Section 6.0, Structures.

Altering information using this function can adversely affect the
performance and matching of a particular Biometrie Technology.
Care should be exercised when using this function. See Appendix F
for a discussion on scoring and thresholding.

For example, whether or not two BIRs are determined to match or
not is dependent on the threshold setting. It is important to realize that if
the threshold value is changed, there could be a dramatic change in the
amount of false accepts or false rejects experienced. The vendor's pre-set
thresholds should be adequate in most instances.

Vendors may provide additional constants/variables that can be
read/write. It is important to remember that these additional constants will
be specific to that vendor.

This function allocates data pointed to by IpData. It is the
application programmers responsibility to free this allocated memory using
the function HAAPIFree for readable data

Under Windows NT, any strings returned by this function are Wide
Character (UNICODE) strings. If UNICODE is not defined in your

22 April 1998

Interface Specification 30
HA-API,Ver2.0

project, use the Win32 API WideCharToMultiByte to convert the string to
ANSI Code Page.

Under Windows 95, any strings returned by this function are ANSI
strings.

4.3.3 HAAPIBioProperties

HAAPIERROR HAAPIBioProperties(HBT hbtBioTechnology,
LPSCREENATTRIBS IpScreenAttribs)

Description:

This function displays the biometric properties dialog box, if it is
available. The biometric properties dialog box could be used to read and
set parameters, which are specific to a biometric and their input devices.

Parameters:

hbtBioTechnology - a handle to a Biometric Technology. This
handle is returned by a call to GetBioTechnology.

IpScreenAttribs - a pointer to a Screen Attributes Data structure.
This contains information for dialog box placement. If this parameter is
NULL, the vendor default screen placement values will be used by the
vendor module. For more information on Screen Attributes Data
structures, see Section 6.0, Structures.

Return Value:

Upon successful capture, HAAPIBioProperties returns
HAAPI_NOERROR. If this function fails, this function returns
HAAPIERROR. To get extended error information, call the Win32 API,
GetLastError.

Remarks:

This function is intended to provide access to unique vendor
technology properties and device settings. An example would include
adjustment of contrast or brightness for an imaging device.

In the event that a biometric properties page is not supported for a
given biometric, HAAPI_NOBIOPROPERTIESPAGE is returned by
GetLastError.

22 April 1998

Interface Specification 31
HA-API,Ver2.0

NOTE: For applications that do not include a GUI (e.g., embedded
applications) IpScreenAttribs will be set to null.

22 April 1998

Interface Specification
HA-API, Ver 2.0

32

SS^^^^^^^ä^^ä^SsS

5.0 Service Provider Interface

5.1 Description

While the HA-API provides a generic biometric interface for application developers to
use, each specific biometric vendor is responsible for providing certain specific key
elements for the API, encompassed in a Technology Engine. As an example, the diagram
below describes a possible HA-API application architecture (the biometric technology
engines are highlighted):

Application

Human Authentication - API (HA-API)

Finger Technology
Engine ^
(BSP)

Facial Technology.]
Engine

y (BSP)

Speech Technology
Engir^^^S
(BSP)

Frame Grabber Device Drivers Sound Card Device
Drivers

Windows NT

Encompassed in each Technology Engine, the vendor must provide exported functions
that perform the following:

1. An enrollment wizard.
2. A standard biometric capture screen.
3. An interface for processing the identifier data from captured biometric data.
4. An interface for verifying two sets of identifier data.
5. An interface performing a Live Verify (capture, process and verify).
6. An interface to retrieve and set module specific information.

This technology must be entered in the registry to make the HA-API aware of its
existence. To register a technology, a vendor must first generate a unique biometric

22 April 1998

Interface Specification 33
HA-API,Ver2.0

identifier (BUID). The BUID is a 128 bit Global Unique Identifier (GUID). This value,
along with the technology module (BSP) name and the technology name, must be stored
in the system registry. The registry entries are:

HKEY_LOCAL_MACHINE\SOFTWARE\HAAPI\Vendors\Ke/K/orA^/Me\
TechnologyNameSBVJD

HKEY_LOCAL_MACHINE\SOFTWARE\HAAPI\Vendors\Fe««foriVöme\
77ec/r«o/ogyA'ia»ie\ModuleName

HKEY_LOCAL_MACHINE\SOFTWARE\HAAPI\Vendors\Fe«rforiVa»ie\
TechnologyName\

The BUID, BSP Module Name and the Technology Name are string values. Please refer
to Section 5.1.1, BUID, for an example of how a BUID should be stored in the registry.

Along with these entries must exist the names of the enrollment function, the update
function, the capture function, the processing function, the verifying function, the live
verify function, the information function, the biometric properties function, and the free
function. These entries are described in the next sections. All device initialization
necessary for the particular vendor/technology must occur within these functions.

5.1.1 BUID

The BUID is a unique identifier that is generated for every technology module (BSP) that
is being released. It is used to identify a specific BSP product and allows an application to
distinguish among multiple BSPs. This identifier is a vendor generated GUID. Globally
Unique Identifiers or GUIDs are 128 bit numbers and when generated properly, never
produce the same number twice, no matter how many times it is run or how many
different machines it runs on. Every entity that needs to be uniquely identified (such as
each BSP and/or major revision thereof) should have a BUID. For example, a particular
vendor could generated a GUID of:

{4E43227D-A799-11 dl -AFAF-00609761BD69}

and therefore use this as the HAAPI Biometric Unique Identifier for their module. This
identifier as shown above, with enclosed in braces, is stored in the registry as a string
value.

22 April 1998

Interface Specification «4
HA-API,Ver2.0

5.1.2 Asynchronous Operation

All BSP vendor module software must support asynchronous operation in that they must
be thread-safe.

5.1.3 Authentication of BSP module

Similar to Cryptographic Service Providers (CSPs), the biometric community should work
toward requiring every BSP be digitally signed by Microsoft in order to be recognized by
the operating system. For CSPs, the operating system validates the signature periodically
to ensure that the CSP has not been tampered, removed or replaced. For the non-
Microsoft operating system environments, other methods exist to jointly authenticate the
CSP to some overall system security module. The analogy may be a cryptographic
solution between the HA-API runtime and the BSP for authenticating each other.

5.1.4 ANSI vs. UNICODE

To facilitate HAAPI availability under both Windows 95 and Windows NT, the BSP
vendor should support both ANSI and UNICODE strings. Under Windows 95, any
function that returns a character string, must return it as a ANSI string. Under Windows
NT, these strings must be returned as UNICODE. This ensures persistence of string data
across all vendor BSPs.

5.2 User Interface

To maintain a high level of GUI consistency throughout HA-API product
implementations, all user interface screens, including the enrollment wizard, should have a
standard look and feel. The vendor must adhere to the Windows Interface Guidelines for
Software Design for layout, color, fonts, input/output mechanisms, etc. Samples of
compliant are provided in Appendix G as a guide. Additionally, the following guidelines
are provided:

a. Keep all screens and windows as simple as possible
b. Windows should perform a single function
c. Keep nesting to the minimum practical
d. Use the wizard technique for functions composed of a series of steps, using the

Common Control Wizard Property Pages.
e. Default selections whenever possible

It is recognized that not all biometric applications are implemented on PC workstations
and thus provide a GUI. For such embedded applications (e.g., door opening devices,

22 April 1998

Interface Specification «5
HA-API,Ver2.0

voice over telephone, etc.), these guidelines would obviously not apply. However, for
most computer applications, and whenever a GUI is used, the above guidelines apply.

5.3 The Enrollment Wizard

The enrollment wizard provides the ability to perform biometric specific enrollments. This
wizard is initiated by a call to the HA-API function, HAAPIEnroll. The wizard should be
able to perform any number of biometric captures. After these captures have occurred, it
should also perform the necessary identifier extraction. Both sets of data (the raw
biometric data and the biometric identifier record) should be returned. To accommodate a
standard interface for the users, two generic structures have been created: Raw Biometric
Data structure and Biometric Identifier Record structure. These structures both have two
members, a size member and a data member. The data member points to a block of
memory that contains all of the biometric data. (If there are multiple images, they should
be stored together in the same block of memory) It is also suggested that this data should
be prefixed by a vendor specific structure, containing biometric specific data (i.e., number
of images, image size, camera type, frame grabber type, etc.). To accommodate easy
memory management, this pointer should be able to be freed by the programmer via a call
to FreeFn. The size member should tell the programmer the exact size in bytes of the
data member. For a diagram of the Raw Biometric Data Structure and the Biometric
Identifier Record structure, see Section 6.0, Structures.

User interface guidelines applicable to the enrollment wizard are provided in Section 5.2
above. It is imperative that the vendor use the Win32 Common Control Property Page
wizard sheets to implement the Enrollment wizard. Not only does this make the
development effort easier, it provides a cohesive method of developing a wizard which is
standard across all HAAPI vendor modules.

A Vendor must provide an exported enrollment function and specify the name as a string
value in the registry under the key:

HKEY_LOCAL_MACHINE\SOFTWARE\HAAPI\Vendors\Ke«rforiVaine\
recAno/ogyAfamelEnrollmentFunctionName

5.3.1 Exported Enrollment Function

HAAPIERROR EnrollmentFn(DWORD dwEnrollType,
LPSCREENATTRIBS IpScreenAttribs,
LPRAWBIODATA IpRawBioData,
LPBIR IpBiolDRec,
LPENROLLMENTPAGES IpPages)

22 April 1998

Interface Specification JO
HA-API,Ver2.0

Description:

This function captures and processes Raw Biometrie Data. This
function differs from CaptureFn (see 5.5.1, below) because it encapsulates
the entire process of enrollment. A wizard provides the means for the
application to ensure a successful enrollment. The application is presented
with a modal wizard dialog box, that varies according to the technology
being used, that guides the user through the various steps of enrollment.
UpdateFn is used to update a previously enrolled user.

Batch enrollment can be accommodated by this function.
EnrollmentFn optionally allows the return of Raw Biometrie Data
(without processing) and/or to conversely pass in Raw Biometrie Data for
processing without any user interface.

The wizard provided by the EnrollmentFn function must be
extendable, through the use of the Win32 Common Control Property Page
and the PSH_WIZARD flag via the lpPages structure.

Parameters:

EnrollType - a value which indicates what data is to be returned
(i.e., what type of enrollment is to be performed) and is composed of an
'OR'ing of one or more of the following values as follows:

Value Meaning
ENROLL_CAPTURE If set, indicates that a capture will be

performed.
ENROLL_BIR If set, indicates that a BIR will be

returned.
ENROLL_RAW If set, indicates that raw data will be

returned.

IpScreenAttribs - a pointer to a Screen Attributes Data structure.
This contains information for dialog box placement. If this parameter is
NULL, the vendor default screen placement values will be used by the
vendor module. For more information on Screen Attributes Data
structures, see Section 6.0, Structures.

NOTE: For applications that do not include a GUI (e.g., embedded
applications) IpScreenAttribs will be set to NULL.

IpRawBioData - a pointer to a Raw Biometrie Data structure that
is filled upon successful capture. If this parameter is NULL, the Raw

22 April 1998

Interface Specification <J7
HA-API,Ver2.0

Biometrie Data is discarded upon function return. If the pointer is valid,
but the lpRawData member of this structure is NULL, then the Raw
Biometrie Data from the enrollment is returned. For more information on
Raw Biometrie Data structures, see Section 6.0, Structures.

IpBiolDRec - a pointer to a Biometrie Identification Data structure
that is filled upon successful capture/process. This parameter can be
NULL. For more information on Biometrie Identification Data structures,
see Section 6.0, Structures.

IpPages - a pointer to an Enrollment Pages Data structure. This
parameter defines any additional pages that you would like to add to the
Enrollment Wizard. Pages can be added at the beginning or at the end of
the Wizard. Wizard pages are Win32 Common Control Property Pages
with the PSH_WIZARD flag set. For more information about Property
Pages and the PSH_WIZARD flag, please refer to the Microsoft Platform
SDK, Wizard Property Sheets. For more information on Enrollment Pages
Data structures, see Section 6.0, Structures.

Return Value:

Upon successful capture, EnrollmentFn returns
HAAPINOERROR. If this function fails, return the appropriate
HAAPI_ERROR via call to the Win32 API, SetLastError.

Remarks:

This function allocates the raw data pointed to by the lpRawData
member of the Raw Biometrie Data structure and by the IpBioData
member of the Biometrie Identification data (IpBiolDRec) structure. It is
the application programmers responsibility to free this allocated memory
using the FreeFn function.

The size of the data allocated is indicated by the ulSize member of
the Raw Biometrie Data and Biometrie Identification Record structures.

EnrollmentFn can function in several different fashions, depending
on the values included in the EnrollType parameter. Enrollment types fall
into the following four categories:

Standard Enrollment #1 - This is the most commonly used
enrollment type. It involves capturing the raw biometric data, processing
it, and returning the processed data in the form of a BIR. For the standard
enrollment #1, dwEnrollType would be:

22 April 1998

Interface Specification 38
HA-API,Ver2.0

ENROLL_CAPTURE | ENROLL_BIR.

Standard Enrollment #2 - This is the same as standard enrollment
#1, but this returns the newly captured raw biometric data as well as the
BIR. For the standard enrollment #2, dwEnrollType would be:

ENROLL_CAPTURE | ENROLL_RAW | ENROLL_BIR.

Batch Enrollment. Part 1 - This allows raw biometric data to be
captured for later processing and storage. It returns raw biometric data.
For the batch enrollment part 1, dwEnrollType would be:

ENROLL_CAPTURE | ENROLL_RAW.

Batch Enrollment, Part 2 - This performs the processing of
previously captured raw biometric. It returns a processed BIR. For the
batch enrollment part 2, dwEnrollType would be:

ENROLL_BIR.

To perform enrollment processing only (Batch Enroll, Part 2), the
application must pass in the previously captured raw biometric data via
IpRawBioData. This enrollment type typically requires no GUI.

NOTE: The data stored in the Biometric Identification Record structure
(IpBiolDRec) is technology dependent. BSP documentation must include
details of what is included in this structure.

The Data stored in the Biometric Identification Record structure
(IpNewBiolDRec and IpCurrentBiolDRec) can be a concatenation of
multiple identifiers, and can contain both raw and processed data, as well
as other information. The following is suggested:

• The vendor should return for storage any data that will be
required for subsequent matching purposes.

• The vendor should include necessary header data to allow
discernment as to the content of the structure. For example,
items that may be useful include:

• Structure type (IpRawData, IpBioData)
• Data type (raw, processed, both)
• Number of captures
• BUID (of enrolling technology)
• Capture date/time

22 April 1998

Interface Specification 39
HA-API,Ver2.0

NOTE: For applications that do not include a GUI (e.g., embedded
applications) IpScreenAttribs and IpPages will be set to NULL.

5.4 Update Enrollment

This function provides for the update of previously enrolled biometric data. The previous
data may be replaced, appended, or in some way averaged with the newly captured data to
result in a new biometric identification record. Use of this function will generally be
performed immediately after a capture or enrollment, using this newly captured data along
with the previous data to calculate the new biometric identifier.

A Vendor must provide an exported update function and specify the name as a string
value in the registry under the key:

HKEY_LOCAL_MACHINE\SOFTWARE\HAAPI\Vendors\Fe«rforName\
TechnologyNameWjidateFvmctioTiName

5.4.1 Exported Update Function

HAAPIERROR UpdateFn(LPRAWBIODATA IpOldRawBioData,
LPRAWBIODATA IpNewRawBioData,
LPBIR IpStoredBiolDRec,
LPBIR IpNewBiolDRec)

Description:

This function performs various adaptation, reenrollment or updates
to previously enrolled/stored biometric data. All data collection must be
done previously through HAAPICapture or HAAPIEnroll. This function
provides the capability to receive raw biometric data. In addition, a
reenrollment may require the current stored BIR in order to create the new
one. Thus, this function extends the HAAPIProcess functionality. The
HAAPIUpdate may replace, append, or average the old with the new data
(the specific update scheme being technology dependent).

Parameters:

IpOldRawBioData - a pointer to a Raw Biometric Data structure.
For more information on Raw Biometric Data structures, see Section 6.0,
Structures.

IpNewRawBioData - a pointer to a recently captured Raw
Biometric Data structure. For more information on Raw Biometric Data
structures, see Section 6.0, Structures.

22 April 1998

Interface Specification 40
HA-API,Ver2.0

IpStoredBiolDRec - a pointer to a Biometrie Identification Data
structure that has the previously stored enrollment that will be adapted by
this call to UpdateFn. For more information on Biometrie Identifier Data
structures, see Section 6.0, Structures.

IpNewBiolDRec - a pointer to a Biometrie Identification Data
structure that is filled with the new updated/ refreshed/ adapted BIR For
more information on Biometrie Identifier Data structures, see Section 6.0,
Structures.

Return Value:

Upon successful capture, UpdateFn returns HAAPI_NOERROR..
If this function fails, return the appropriate HAAPI_ERROR via call to the
Win32 API, SetLastError.

Remarks:

The size of the data allocated is indicated by the ulSize member of
the Raw Biometrie Data and Biometrie Identifier Record structures.

Note that as a minimum, the application must pass in the newly
captured raw biometric data (IpNewRawBioData) and the BSP must pass
back the new biometric identifier record (IpNewBiolDRec). The other data
(IpOldRawBioData and IpStoredBiolDRec) is set to NULL if unused. Use
is dependent on the biometric technology. The BSP documentation must
identify which of the optional data is used, if any.

5.5 Standard Capture Screen

The standard biometric capture screen should challenge the user to capture the biometric.
It simply returns a Biometric Identifier Record structure that can be used to extract and
match against.

User interface guidelines applicable to the enrollment wizard are provided in Section 5.2
above.

A Vendor must provide an exported capture function and specify the name as a string
value in the registry under the key:

22 April 1998

Interface Specification 41
HA-API,Ver2.0

HKEY_LOCAL_MACHINE\SOFTWARE\HAAPI\Vendors\Ke«rföWVawc\
JecA/io/ogyA'amelCaptureFunctionName

5.5.1 Exported Capture Function

HAAPIERROR CaptureFn(LPSCREENATTRIBS IpScreenAttribs,
LPRAWBIODATA IpRawBioData)

Description:

This function captures Raw Biometrie Data. The application is
presented with a modal capture dialog box, that varies according to the
technology being used. Upon successful capture, a Raw Biometrie Data
structure is filled with appropriate data. Depending on the technology, this
data has unique characteristics. It can, in Speaker Verification for instance,
be a series of speech utterances.

Parameters:

IpScreenAttribs - a pointer to a Screen Attributes Data
structure. This contains information for dialog box placement. If this
parameter is NULL, the vendor default screen placement values will be
used by the vendor module. For more information on Screen Attributes
Data structures, see Section 6.0, Structures.

NOTE: For applications that do not include a GUI (e.g., embedded
applications) IpScreenAttribs will be set to NULL.

IpRawBioData - a pointer to a Raw Biometrie Data structure that
is filled upon successful capture. For more information on Raw Biometrie
Data structures, see Section 6.0, Structures.

Return Value:

Upon successful capture, CaptureFn returns HAAPINOERROR.
If this function fails, return the appropriate HAAPI_ERROR via call to the
Win32 API, SetLastError.

Remarks:

22 April 1998

Interface Specification 42
HA-API,Ver2.0

This function allocates the raw data pointed to by the IpRawData
member of the Raw Biometrie Data structure. The application
programmer will free this allocated memory through the FreeFn function.

The size of the data allocated is indicated by the ulSize member of
the Raw Biometrie Data structure.

5.6 Processing Interface

The processing interface should accept a Raw Biometrie Data structure and return a
Biometrie Identifier Record structure.

A Vendor must provide an exported processing function and specify the name as a string
value in the registry under the key:

HKEY_LOCAL_MACHINE\SOFTWARE\HAAPI\Vendors\Fc«rforA^iiie\
recAHo/ogyAfameNProcessFunctionName

5.6.1 Exported Process Function

HAAPIERROR ProcessFn(LPRAWBK) IpRawBioData,
LPBIR IpBiolDRec)

Description:

This function processes the raw biometric data captured via a call
to HAAPICapture and extracts a unique Biometric Identifier Record. The
Raw Biometric Data contains raw data and data size. The raw data differs
per technology, for example: Finger Imaging could be - a raw grayscale
finger image; Facial Recognition could be - a video image of a face;
Speaker Verification could be - a digitized speech waveform. The
resulting Biometric Identifier Record contains processed data and data size.
The processed data also differs per technology, for example: Finger
Imaging could be - a finger image identifier record; Facial Recognition
could be - facial image data; Speaker Verification could be - a spectral
representation.

Parameters:

22 April 1998

Interface Specification 40
HA-API,Ver2.0

IpRawBioData - a pointer to a Raw Biometrie Data structure. For
more information on Raw Biometrie Data structures, see Section 6.0,
Structures.

IpBiolDRec - a pointer to a Biometrie Identifier Record. For more
information on Biometrie Identifier Record structures, see Section 6.0,
Structures.

Return Value:

Upon successful extraction of a Biometrie Identifier Record,
ProcessFn returns HAAPI_NOERROR. If this function fails, return the
appropriate HAAPI_ERROR via call to the Win32 API, SetLastError.

Remarks:

This function allocates the raw data pointed to by the IpBioData
member of the Biometrie Identifier Record structure. The application
programmer will free this allocated memory through the FreeFn function.

The size of the data allocated is indicated by the ulSize member of
the Biometrie Identifier Record structure.

5.7 Verify Interface

The verify interface should accept two Biometrie Identifier Record structures. The
interface should return a Yes/No answer for the match.

A Vendor must provide an exported verify function and specify the name as a string value
in the registry under the key:

HKEY_LOCAL_MACHINE\SOFTWARE\HAAPI\Vendors\Fe/irforiVflwe\
TechnologyNameW erifyYunctionNume

5.7.1 Exported Verify Function

HAAPIERROR VerifyFn(LPBIR IpSampleBIR,
LPBIR IpStoredBlR,
LPBIR IpAdaptedBIR,
LPBOOL IpbResponse)

22 April 1998

Interface Specification 44
HA-API,Ver2.0

Description:

This function performs a verification (1-to-l) match against two
Biometrie Identifier Records. The first BIR is the sample biometric
captured at time of verification. The second stored BIR is retrieved from a
database for verification. If the stored BIR is modified as a result the
verification, the modified or adapted BIR is returned.

Parameters:

IpSampleBIR - a pointer to the Biometric Identifier Record
structure in question. For more information on Biometric Identifier Record
structures, see Section 6.0, Structures.

IpStoredBIR - a pointer to the original Biometric Identifier Record
structure stored at enrollment. For more information on Biometric
Identifier Record structures, see Section 6.0, Structures.

IpAdaptedBIR - a pointer to the an adapted Biometric Identifier
Record structure, based upon the original BIR stored at enrollment and the
sample BIR taken for verification. This parameter can be NULL if the
application does not want an adapted BIR returned. For more information
on Biometric Identifier Record structures, see Section 6.0, Structures.

IpbResponse - a pointer to a Boolean value indicating
(TRUE/FALSE) indicating whether the BIRs matched or not.

Return Value:

Upon successful execution, VerifyFn returns HAAPI_NOERROR.
If the BIRs match, set the parameter IpbResponse to TRUE. If the BIR's
do not match, set it to FALSE. If this function fails, return the appropriate
HAAPI_ERROR via call to the Win32 API, SetLastError. If adaptation is
performed, place the new BIR into LPAdaptedBIR and SetLastError to
HAAPI-ADAPTEDBIR. In the event that adaptation is not supported,
SetLastError to HAAPI_ADAPTATIONNOTSUPPORTED.

Remarks:

If a Biometric Identifier Record is passed in as the parameter
IpStoredBIR, and the match is successful, VerifyFn may attempt to adapt
the enrolled BIR with information taken from the sample BIR. (It is up to
the BSP vendor whether or not to provide adaptation.) If an adaptation is
performed, the IpBioData member of the Biometric Identification Data
structure must point to a valid address upon return from the function.

22 April 1998

Interface Specification 45
HA-API,Ver2.0

Also, upon a successful match, set the extended error to
HAAPI_ADAPTEDBIR.

In the event of an adaptation, this function allocates the data
pointed to by the IpBioData member of the Biometrie Identification Data
structure. It is the application programmer's responsibility to free this
allocated memory using the FreeFn function.

The ulSize member of the Biometrie Identification Record structure
indicates the size of the data allocated.

The Data stored in the Biometrie Identification Record structure
can be a concatenation of multiple identifiers.

Setting of verification thresholds or returning of verification
matching scores may be provided by individual biometric technology
vendors. If so, access is provided using the exported InformationFn
function.

5.8 Live Verify Interface

The live verify interface should accept a single, stored Biometric Identifier Record
structure. The interface should return a Yes/No answer for the match.

A Vendor must provide an exported live verify function and specify the name as a string
value in the registry under the key:

HKEY_LOCAL_MACHINE\SOFTWARE\HAAPI\Vendors\Ke«</oWVame\
recAiio/o^JVamelLiveVerifyFunctionName

5.8.1 Exported Live Verify Function

HAAPIERROR LiveVerifyFn(LPSCREENATTRIBS IpScreenAttribs,
LPBIRIpStoredBIR,
LPBIR IpAdaptedBIR,
int iTimeout,
LPBOOL IpbResponse)

Description:

22 April 1998

Interface Specification ^"
HA-API,Ver2.0

This function performs a live verification (1-to-l). A live
verification consists of capturing, processing, and matching against a stored
Biometrie Identifier Record. There are two reasons for a live verification
function. It can be used as a convenience function, combining three
commonly used, successively called functions. LiveVerifyFn can also be
used to perform repeated captures, processes and verifies, until a match is
successful or a timeout is reached.

Parameters:

IpScreenAttribs - a pointer to a Screen Attributes Data structure.
This contains information for dialog box placement. If this parameter is
NULL, the vendor default screen placement values will be used by the
vendor module. For more information on Screen Attributes Data
structures, see Section 6.0, Structures.

NOTE: For applications that do not include a GUI (e.g., embedded
applications) IpScreenAttribs will be set to NULL.

IpStoredBIR - a pointer to the original Biometrie Identifier Record
structure stored at enrollment. For more information on Biometrie
Identifier Record structures, see Section 6.0, Structures.

IpAdaptedBIR - a pointer to the an adapted Biometrie Identifier
Record structure, based upon the original BIR stored at enrollment and the
sample BIR taken for verification. This parameter can be NULL if the
application does not want an adapted BIR returned. For more information
on Biometrie Identifier Record structures, see Section 6.0, Structures.

iTimeout - an integer designating the timeout (in milliseconds) to
be used for the live verify. This can be a positive value or
HAAPI_NOTIMEOUT.

IpbResponse - a pointer to a Boolean value indicating
(TRUE/FALSE) indicating whether the BIRs matched or not.

Return Value:

Upon successful capture and match, LiveVerifyFn returns
HAAPI_NOERROR and sets IpbResponse to TRUE. If the function fails,
either through timeout, cancel, or no match, return the appropriate
HAAPI_ERROR via a call to the Win32 API, SetLastError. If adaptation
is performed, place the new BIR into LPAdaptedBIR and SetLastError to

22 April 1998

Interlace Specification 47
HA-API,Ver2.0

HAAPI-ADAPTEDBIR. In the event that adaptation is not supported,
SetLastError to HAAPI ADAPTATIONNOTSUPPORTED.

Remarks:

If a Biometrie Identifier Record is passed in as the parameter
IpStoredBIR, and the match is successful, LiveVerifyFn may attempt to
adapt the enrolled BIR with information taken from the sample BIR. (It is
up to the BSP vendor whether or not to provide adaptation.) If an
adaptation is performed, the IpBioData member of the Biometrie
Identification Data structure must point to a valid address upon return from
the function. Also, upon a successful match, set the extended error to
HAAPI_ADAPTEDBIR.

In the event of an adaptation, this function allocates the data
pointed to by the IpBioData member of the Biometrie Identification Data
structure. It is the application programmer's responsibility to free this
allocated memory using the FreeFn function.

The ulSize member of the Biometrie Identification Record structure
indicates the size of the data allocated.

The Data stored in the Biometrie Identification Record structure
can be a concatenation of multiple identifiers.

Setting of verification thresholds or returning of verification
matching scores may be provided by individual biometric technology
vendors. If so, access is provided using the exported InformationFn
function.

5.9 Free Memory

The free interface allows the developer to release the memory allocated by some of the
Authentication functions. Since there are various ways to allocate memory, and many
incompatibilities between compiler vendor's C runtime libraries, the vendor must provide
the free function.

A Vendor must provide an exported free function and specify the name as a string value
in the registry under the key:

HKEY_LOCAL_MACHINE\SOFTWARE\HAAPI\Vendors\Kei«/or7Vflme\
recAMo/ogyAfawelFreeFunctionName

22 April 1998

Interface Specification 48
HA-API,Ver2.0

5.9.1 Exported Free Function

HAAPIERROR FreeFn(LPVOID lpData);

Description:

This function frees the memory passed to it in lpData.

Parameters:

lpData - a void pointer to a block of memory.

Return Value:

Upon successful execution of a free, FreeFn returns
HAAPI_NOERROR. If the function fails return the appropriate
HAAPI_ERROR via a call the Win32 API, SetLastError.

5.10 Technology Specific Parameters

Any biometric technology/product specific parameters are the responsibility of the vendor.
It is suggested that such parameters be registered at the system level (registry settings) at
the time of installation of the vendor's software and documented in the product literature.
The Information function may be used for application program access to get or set these
parameters.

The information interface is provided to make available certain valuable information to the
HA-API compliant application developer, and allowing them (in certain cases) to alter the
information. This function must support a minimal set of values. Additional values can be
supported, depending on the desires of the vendor to make information available.

A Vendor must provide an exported information function and specify the name as a string
value in the registry under the key:

HKEY_LOCAL_MACHINE\SOFTWARE\HAAPI\Vendors\Ke«rforA^we\
TecAwo/ogviVflwellnformationFunctionName

5.10.1 Exported Information Function

HAAPIERROR InformationFn(long IRequestedlnfo,
LPVOID lpData,
DWORD cbSize)

22 April 1998

Interface Specification 49
HA-API,Ver2.0

Description:

This function provides an interface for the application developer to
get and set information specific to a Biometrie Technology. Altering
information using this function can adversely affect the performance and
matching of a particular Biometrie Technology. Care should be exercised
when using this function. It must also be noted that vendors are only
required to support a minimal set of constants for the requested
information parameter. Any parameters used outside of this set are
considered specific to the vendor and may not work across multiple vendor
applications.

Parameters:

IRequesetlnfo - a long integer constant defining the requested
information being retrieved or set.

IpData - a pointer to the variable that contains the data to be set or
will hold the data being retrieved.

cbSize - the size, in bytes, of IpData.

Return Value:

Upon successful capture, InformationFn returns
HAAPINOERROR. If this function fails, return the appropriate
HAAPI_ERROR via call to the Win32 API, SetLastError.

Remarks:

All vendors must support the following constants:

Constant Data Type for IpData
HAAPI_MAJORVERSION long (read only)
HAAPI_MINORVERSION long (read only)
HAAPI_BUILDVERSION long (read only)
HAAPI_BUILDDATE long (read only - Julian date)
HAAPIJVENDORNAME LPTSTR (read only)
HAAPI_TECHNAME LPTSTR (read only)

Variable Data Type for IpData
HAAPI_GET_LAST_SCORE Scoring Record (read only)
HAAPI_SET_SYSTHRESHOLD Threshold Record (write)
HAAPI_GET_SYSTHRESHOLD Threshold Record (read)

22 April 1998

Interface Specification 50
HA-API,Ver2.0

Notes: 1) 'readonly'is from the perspective of the application.
2) Variable definitions are found in Section 6.0, Structures.

Vendors may provide additional constants/variables that can be
read/write. It is important to remember that these constants will be specific
to that vendor.

This function allocates data pointed to by IpData. The application
programmer will free this allocated memory through the FreeFn function.

Under Windows NT, any strings returned by this function are Wide
Character (UNICODE) strings. If UNICODE is not defined in your
project, use the Win32 API WideCharToMultiByte to convert the string to
ANSI Code Page.

Under Windows 95, any strings returned by this function are ANSI
strings.

5.11 Standard Biometrie Properties Screen

The standard biometric properties screen should provide an interface to the user to alter
specific settings relating to a biometric.

A Vendor may provide an exported biometric properties function. If provided, the vendor
must specify the name as a string value in the registry under the key:

HKEY_LOCAL_MACHINE\SOFTWARE\HAAPI\Vendors\Fc/irforiVflme\
recA«0/0gyAfame\BioPropertiesFunctionName

5.10.1 Exported Biometric Properties Function

HAAPIERROR BioPropertiesFn(LPSCREENATTRIBS IpScreenAttribs)

Description:

This function displays a biometric properties dialog box. This dialog
box is used to alter specific settings to the biometric.

Parameters:

22 April 1998

51 Interface Specification ** '
HA-API,Ver2.0

IpScreenAttribs - a pointer to a Screen Attributes Data structure.
This contains information for dialog box placement. If this parameter is
NULL, the vendor default screen placement values will be used by the
vendor module. For more information on Screen Attributes Data
structures, see Section 6.0, Structures.

NOTE: For applications that do not include a GUI (e.g., embedded
applications) IpScreenAttribs will be set to NULL.

Return Value:

Upon successful capture, BioPropertiesFn returns
HAAPI_NOERROR. If this function fails, return the appropriate
HAAPI_ERROR via call to the Win32 API, SetLastError. If this function
is not supported SetLastError to HAAPI_NOBIOPROPERTIESPAGE.

22 April 1998

Interface Specification 52
HA-API,Ver2.0

6.0 Structures

The data structures herein defined have been designed to be as flexible as possible,
allowing the biometric vendor to store whatever information is needed, without
unnecessary constraints. For example, the biometric data structures may contain a single
biometric sample or may contain multiple samples.

In the simplest case, the raw biometric data structure will be used to store the raw, yet
unprocessed data resulting from a capture, and the biometric identifier record will be used
to hold the data resulting from a processing operation. However, in order to support a
wide range of process flow possibilities and biometric templates (models), these structures
can be used to store any combination of data necessary to facilitate subsequent matching.
It is the responsibility of the biometric technology provider (BSP) to fill this data structure
with the data needed and in the format needed, and to be able to extract this data when it
is needed.

It is recommended that the vendor include header information within the data structure to
facilitate its identification. We strongly encourage BSPs to document standard data types
and formats within the raw biometric data or BIR structures, to facilitate and allow
applications to make use of this data. Specifically, if raw biometric data is stored in BMP,
TIFF, JPEG, GIF, WAV, AU or other standard formats, documentation should allow for
the extraction and display of individual records.

6.1 Raw Biometric Data Structure

The Raw Biometric Data Structure is generally used to hold the unprocessed data
captured by a biometric capture device. For example, with finger imaging or facial
recognition, this may be one or more bit mapped images; for speaker verification, it may
be sampled audio waveforms. However, depending on the biometric vendor/technology,
it may be used to hold data that has undergone some degree of processing in lieu of or in
addition to the raw data. The actual contents of the structure should be included in the
BSP documentation.

Most applications should not need to manipulate the contents of this data
structure; however, should this be required, refer to the BSP documentation to interpret
Biometric/Vendor Specific Header and to determine data type and format.

typedef struct tagRBD{

22 April 1998

Interface Specification
HA-API,Ver2.0

53

LPHDR IphdrHaapiHeader;
LPVOID IpRawData;

} RAWBIODATA, *LPRAWBIODATA, *PRAWBIODATA;

Raw Biometrie Data Structure

InhrirHaaniHfiadfir

IpRawData

BiometricA/endor Specific Header

Raw Biometrie Data 1

•
•
•

Raw Biometrie Data N

Member
IphdrHaapiHeader

IpBioData

Description
A pointer to the generic HAAPI header for this Raw
Biometrie Data structure.
A pointer to the Raw Biometrie Data.

6.2 Biometrie Identifier Record Structure

The Biometrie Identifier Record (BIR) Data Structure is generally used to hold the
processed biometric data. For example, with finger imaging it may be the extracted
minutiae points; for facial recognition, the facial features; or for speaker verification, the
audio characteristics. However, depending on the biometric vendor/technology, it may be
used to hold raw data or data that has undergone some degree of processing in lieu of or
in addition to the identifier data. The actual contents of the structure should be included
in the BSP documentation.

Most applications should not need to manipulate the contents of this data
structure; however, should this be required, refer to the BSP documentation to interpret
Biometric/Vendor Specific Header and to determine data type and format.

22 April 1998

Interface Specification
HA-API,Ver2.0

54

typedef struct tagBIR{
LPHDR IphdrHaapiHeader;
LPVOID IpBioData;

} BIR, *LPBIR, *PBIR;

Biometrie Identifier Record Structure

IphdrHaapiHeader

IpBioData

Biometric/Vendor Specific Header

Biometrie Identifier Data 1

Biometrie Identifier Data N

Member
IphdrHaapiHeader
IpBioData

Description
A pointer to the generic HAAPI header for this BIR.
A pointer to the Biometrie Identifier Data.

6.3 HA-API Header Structure

The HaapiHeader is included with the Raw Biometrie Data and Biometrie Identifier Data
Structures, to provide standard header information within each to facilitate import/export
of this data.

typedef struct tagHH{
DWORD dwDataType;
ULONG ulSize;
BUID buidTechnology;
LPTSTR IpszRevLevel;
DWORD dwDateCreated;
DWORD dwTimeCreated;

} HDR, *LPHDR, *PHDR;

22 April 1998

Interface Specification
HA-API,Ver2.0

55

IpHaapiHeader

dwDataType

ulSize

buidTechnology

IpszRevLevel

dwDateCreated

dwTimeCreated

Member
dwDataType

ulSize

buidTechnology

IpszRevLevel

dwDateCreated
dwTimeCreated

Description
Flag Indicating if the data contained in the structure
is raw biometric data, processed biometric identifier
data, or both. Valid values are:

RAW_TYPE
BIRTYPE
RAW_TYPE | BIRJTYPE

Unsigned long value indicating the size, in bytes, of
the data following the HAAPI header.
The BUID of the BSP which generated the data
stored in as a GUID structure.
A Null terminated string indicating the Rev level of
the BSP which generated the data stored in the
structure. Under Windows NT, this string will
always be UNICODE. Under Windows 95, this
string will always be ANSI.
The date on which the data structure was created.
The time of day when the data structure was
created.

22 April 1998

Interface Specification
HA-API,Ver2.0

56

6.4 Biometrie Technology Structure

The Biometrie Technology Structure is used to identify an available biometric technology
by its Biometric Unique Identifier (BUID) and name (which are registered when the BSP
is installed).

typedef struct tagBT{
BUID buidTechnology;
LPTSTR IpszTechnologyName;

} BIOTECH, *LPBIOTECH, *PBIOTECH;

Biometrie Technology Structure

buidTechnology

IpszTechnologyName

Member
buidTechnology

IpszTechnologyName

Description
A structure containing the BUID data for a
particular BSP.
A pointer to a string indicating the name of a
technology. Under Windows NT, this string will
always be UNICODE. Under Windows 95, this
string will always be ANSI.

6.5 BUID Structure

The Unique Biometric Identifier (BUID) is a Global Unique Identifier (GUID) generated
by a vendor. This BUID is used to identify an available biometric technology.

typedef struct tagBUID{
DWORD dwDatal;
WORD wData2;
WORD wData3;
BYTE byData4[8];

} BUID, *LPBUID, *PBUID;

22 April 1998

Interlace Specification
HA-API,Ver2.0

57

BUID

dwDwordl

wData2

wData3

byData[8]

Member
dwDwordl
wData2
wData3
byData4

Description
The first DWORD value of the BUID.
The second WORD value of the BUID.
The third WORD value of the BUID.
An array of 8 bytes, comprising the fourth data
element of the BUID

6.6 Scoring Record Structure

The Scoring Record is used to provide information to the application regarding the
preceding matching function. It returns the matching score calculated and threshold
setting used during the last performed match. If the match was performed against more
than one record, or if the score consists of multiple values, each set of scores will be
returned. If an individual/subject threshold was used for the match, it is also returned.

typedef struct tagSR{
ULONG ulSize;
DWORD dwMatchCount;
LPSD IpsdScoreData

} SIR, *LPSIR, *PSIR;

22 April 1998

Interface Specification
HA-API,Ver2.0

58

Score Record Structure

ulSize

dwMatchCount

IpsdScoreData

Score Data Structure 1

Score Data Structure N

Member
ulSize
dwMatchCount

IpsdScoreData

Description
Size of IpsdScoreData in bytes.
The number of structures included in IpsdScoreData
array.
A pointer to an array of Score Data structures.

6.7 Scoring Data Structure

The Scoring Data Structure contains the data for a particular score. It contains the
matching score calculated and threshold setting used during the last performed match. It
also contains a descriptor of the score.

typedef struct tagSD{
DWORD dwMatchScore;
DWORD dwThreshold;
LPTSTR IpszScoreDescriptor;

} SD, *LPSD, *PSD;

22 April 1998

Interface Specification
HA-API,Ver2.0

59

Scoring Data Structure

dwMatchScore

dwThreshold

IpszScoreDescriptor

Member
dwMatchScore

dwThreshold

IpszMatchDescriptor

Description
The value of the match score for the last verification
match performed. This is a value between 0 and 100
(continuous), with 100 being the highest.
The threshold value used with the associated match
score. This is a value between 0 and 100
(continuous), with 100 being the highest.
A pointer to a NULL terminated string value, which
can contain amplification data regarding the
associated match score. Under Windows NT, this is
always a UNICODE string. Under Windows 95,
this is always an ANSI string.

See Appendix F for guidance regarding setting and use of match scores and
thresholds.

6.8 Threshold Record Structure

The Threshold Record is used to get and set the system level matching threshold to be
used in subsequent matches. It contains either a single value or a set of threshold settings.

typedef struct tagSR{
ULONG ulSize;
DWORD dwMatchCount;
LPTD IptdThresholdData

} THREC, *LPTHREC, *PTHREC;

22 April 1998

Interface Specification
HA-API,Ver2.0

60

Threshold Record Structure

ulSize

dwMatchCount

IptdThresholdData

Threshold Data Structure 1

Threshold Data Structure N

Member
ulSize
dwMatchCount

IptdThresholdData

Description
Size of IptdThresholdData in bytes.
The number of structures included in
IptdThresholdData array.
A pointer to an array of Score Data structures.

6.9 Threshold Data Structure

The Threshold Data Structure contains the data for a particular threshold. It contains the
threshold setting and descriptor.

typedef struct tagTD{
DWORD dwThreshold;
LPTSTR IpszThresholdDescriptor;

} TD, *LPTD, *PTD;

22 April 1998

Interface Specification
HA-API,Ver2.0

61

Threshold Data Structure

dwThreshold

IpszThresholdDescriptor

Member
dwThreshold

IpszMatchDescriptor

Description
The value used to determine if a match has occurred.
This is a value between 0 and 100 (continuous), with
100 being the highest.
A pointer to a NULL terminated string value, which
can contain amplification data regarding the
threshold value. Under Windows NT, this is always
a UNICODE string. Under Windows 95, this is
always an ANSI string.

See Appendix F for guidance regarding setting and use of match scores and
thresholds.

6.10 Screen Attributes Structure

The screen attributes structure provides information to the vendor module for placement
of a dialog box. The first member, hParentWnd, indicates the parent window to whom the
dialog box belongs. The second member, lpLocation, is a pointer to an X,Y pair that
gives the screen location of the dialog box, in screen coordinates. The final member,
blsControl, if TRUE, indicates to the vendor module that the dialog box should be
displayed as a child control of the parent window, hParentWnd (using the DS_CONTROL
style). If this is the case, lpLocation, is the location in Client Coordinates.

typedef struct tagSA{
HWND hParentWnd;
LPPOINT lpLocation;
BOOL blsControl;

} SCREENATTRIBS, *LPSCREENATTRIBS, *PSCREENATTRIBS;

Screen Attributes Structure

hParentWnd

lpLocation

blsControl

22 April 1998

Interface Specification
HA-API,Ver2.0

62

6.11 Enrollment Pages Structure

The enrollment pages structure provides information to the vendor module about any
additional enrollment wizard pages needed for the application. Enrollment pages can be
added to the beginning or end of the enrollment wizard. The first member, pspStart, is an
array of PROPSHEETPAGE structures. These structures provide the enrollment wizard
with information about the pages to be added to the beginning of the wizard. The second
member, dwPspStartCount, indicates the number of PROPSHEETPAGE structures in the
pspStart array. The third member, pspEnd, is an array of PROPSHEETPAGE structures.
These structures provide the enrollment wizard with information about the pages to be
added to the end of the wizard. The forth member, dwPspEndCount, indicates the
number of PROPSHEETPAGE structures in the pspEnd array. Additional information on
the PROPSHEETPAGE structure can be found in the Microsoft Platform SDK.

typedef struct tagEP{
PROPSHEETPAGE *pspStart;
DWORD dwPspStartCount;
PROPSHEETPAGE *pspEnd;
DWORD dwPspEndCount;

} BIOTECH, *LPBIOTECH, *PBIOTECH;

Enrollment Pages Structure

pspStart

dwPspStartCount

pspEnd

dwPspEndCount

22 April 1998

Interface Specification
HA-API,Ver2.0

63

7.0 Sample message flows

The following sections depict the sequence of HA-API calls and returned data to perform
the Enrollment and Verification top-level functions.

7.1 Enrollment

7.1.1 New Enrollment

0

$

EnumBioTechology

, o
PQ

(Biometrie Technology Structures,
w'mpBioTechEnum - pointer to sructures

GetBioTechnology

(Biometrie Technology Handle)

HAAPIEnroll

(Biometrie Identifier Data Structure,
via IpBioldRec - pointer to BIR

ReleaseBioTechnology

(HAAPI_NOERROR)

HAAPIFree

(HAAPI_NOERROR)

Store BIR
W
50

Store Successful

22 April 1998

Interface Specification
HA-API,Ver2.0

64

7.1.2 Update Enrollment

o
l-H

ü

EnumBioTechology

2
H

o
l-H n

(Biometrie Technology Structures,
vi&pBioTechEnum - pointer to sruetures

GetBioTechnology

(Biometrie Technology Handle)

HAAPIEnroll

(Biometrie Identifier Data Structure,
via IpBioIDRec - pointer to BIR

HAAPIUpdate

(Updated Biometrie Identifier Data Structure,
via IpAdaptedBIR - pointer to new BIR

ReleaseBioTechnology

(HAAPI_NOERROR)

HAAPIFree

(HAAPI NOERROR)

Store BIR

■ i Store Successful

22 April 1998

Interface Specification
HA-API,Ver2.0

65

7.1.3 Batch Enrollment

o
Si u

EnumBioTecholoev >

2
H

O

(Biometrie Technology Structures)

GetBioTechnology

(Biometrie Technology Handle)

HAAPIEnroll

(Raw Biometrie Data Structure)

ReleaseBioTechnology

HAAPIFree f

Store Raw Biometrie Data

D
A

T
A

B

A
SE

Store Successful

Retrieve Raw Biometrie Data

o
H

h-t

Raw Biometrie Data Structure

EnumBioTechology

- 2
H

O
pa

(Biometrie Technology Structures)
GetBioTechnology

(Biometrie Technology Handle)

HAAPIEnroll

(Biometrie Identifier Data Structure)

ReleaseBioTechnology

HAAPIFree

Store Raw Biometrie Data
D

A
T

A

B
A

SE

Store Successful

22 April 1998

Interface Specification
HA-API,Ver2.0

66

7.2 Verification

7.2.1 Normal Verify

o

u

E

EnumBioTechology

o
1—<

(Biometrie Technology Structures,
via pBioTechEnum - pointer to structures

GetBioTechnology

(Biometrie Technology Handle)

HAAPICapture

(Raw Biometrie Data Structure,
via IprRawBioData - pointer to structure

HAAPIProcess

(Biometrie Identification Record,
via IpBiometricldRec - pointer to BIR

Request BIR

D
A

T
A

B

A
SE

Return BIR

HAAPIVerify

H

O
n

(Verified/Not Verified,
via IpbResponse - pointer to Boolean

ReleaseBioTechnology

(HAAPI_NOERROR)

HAAPIFree

(HAAPI_NOERROR)

22 April 1998

Interface Specification
HA-API,Ver2.0

67

7.2.2 Live Verify

o

5!

Request BIR

D
A

T
A

B

A
SE

Return BIR

EnumBioTechology

o

(Biometrie Technology Structures,
\iapBioTechEnum - pointer to structures

GetBioTechnology

(Biometrie Technology Handle)

HAAPILiveVerify

(Verified/Not Verified,
via IpbResponse - pointer to Boolean

ReleaseBioTechnology

(HAAPI_NOERROR)

HAAPIFree

(HAAPI_NOERROR)

22 April 1998

Interface Specification
HA-API,Ver2.0

68

7.2.3 Verify with Update

o

E

EnumBioTechology

3
H

o
PQ

(Biometrie Technology Structures,
viapBioTechEnum - pointer to structures

GetBioTechnology

(Biometrie Technology Handle)

HAAPICapture

(Raw Biometrie Data Structure,
via IprRawBioData - pointer to structure)

HAAPIProcess

(Biometrie Identification Record,
via IpBiometricIDRec - pointer to BIR)

Request BIR

D
A

T
A

B

A
SE

Return BIR

HAAPIVerify

V

O

(Verified/Not Verified,
via IpbResponse - pointer to Boolean

(Updated BIR,
via IpAdaptedBIR - pointer to structure)

ReleaseBioTechnology

(HAAPI_NOERROR)

HAAPIFree

(HAAPI_NOERROR)

22 April 1998

Interface Specification O"
HA-API,Ver2.0

i sz

8.0 References

Federal Information Processing Standards (FIPS) Publication 190, Guideline for
the Use of Advanced Authentication Technology Alternatives, National Institute of
Standards and Technology, 28 Sep 94

DoD 5200.28.STD, Department of Defense Trusted Computer System Evaluation
Criteria (aka, the "Orange Book"), Dec 1985

The Windows Interface Guidelines for Software Design

22 April 1998

Interface Specification
HA-API,Ver2.0

70

9.0 Glossary

9.1 Acronyms

API

BIR

BSP

BUID

DoD

FIPS

GUI

HA-API

I&A
ID

INFOSEC

LAN

PIN

NRI

PDC
SA

SAF/NT

SPI

SSA

TCP/IP

Application Program Interface

Biometrie Identifier Record

Biometrie Service Provider

Unique Biometrie Identifier

Department of Defense

Federal Information Processing Standard
Graphical User Interface

Human Authentication - Application Program Interface
Identification and Authentication
Identification, Identifier

Information Security

Local Area Network

Personal Identification Number

The National Registry Inc.
Primary Domain Controller

System Administrator

Secure Authentication Facility for Windows NT

Service Provider Interface

System Security Administrator

Transmission Control Protocol

22 April 1998

Interface Specification
HA-API,Ver2.0

71

9.2 Definitions

Term Definition

Authentication

Biometrie

Enrollment

False Accept

False Reject

Identification

Information Security

Matching

Multiple Factor
Authentication

Password

Template

Threshold

Token

Verification

A means of positive identification used to verify authorization to
access information or resources.

In access control, automated methods of verifying or recognizing a
person based upon a physical or behavioral characteristic.
Biometrie techniques may be classified on the basis of some
passive attribute of an individual (e.g., fingerprint, eye retina
pattern, speech pattern) or some unique manner in which an
individual performs a task (e.g., writing a signature, typing).

Entry of biometric and other user information into an
authentication database.

When a sample biometric is incorrectly matched to a file sample.

When a sample biometric is incorrectly determined not to match a
file sample.

One-to-many matching of a single biometric sample set against a
database of samples, to determine which, if any, it matches.

The result of any system of policies/procedures and mechanisms
for protecting from unauthorized disclosure, information whose
protection is authorized.

Comparison of one biometric sample to another to determine if
they belong to the same person.

Using more than one biometric or other mechanism in combination
to verify the identity of a user.

A protected word, phrase, or string of characters that identifies or
authenticates a user for access to a specific resource, such as a
system, process, or data set.

The information extracted from captured raw biometric data that
is stored and used in the comparison/matching process.

A value either above or below which a match is determined to
exist. (May also be used to determine if the quality of a captured
biometric is acceptable or not.)

A physical object, unique to a user, whose possession may be used
to prove the identity of a human.

One-to-one matching of one biometric sample set against another.

22 April 1998

Interface Specification
HA-API,Ver2.0

72

"-jr-.

Appendix A - Function Prototypes

HBT WINAPI CALLBACK GetBioTechnology(BUn) buidBioTechnology);
HAAPIERROR WINAPI CALLBACK ReIeaseBioTechnology(HBT hbtBioTechnology);
HAAPIERROR WINAPI CALLBACK EnumBioTechnology(

LPBIOTECH pBioTechEnum,
DWORD dwBuf,
LPDWORD pdwNeeded,
LPDWORD pdwReturned)

HAAPIERROR WINAPI CALLBACK HAAPD?rocess(HBT hbtBioTechnology,
LPRAWBIO IpRawBioData,
LPBIR IpBiometricldRec);

HAAPIERROR WINAPI CALLBACK HAAPIVerify(HBT hbtBioTechnology,
LPBIR IpSampleBIR,
LPBIR IpStoredBIR,
LPBIR IpAdaptedBIR,
LPBOOL IpbResponse);

HAAPIERROR WINAPI CALLBACK HAAPICapture(HBT hbtBioTechnology,
LPRAWBIODATA IpRawBioData);

HAAPIERROR WINAPI CALLBACK HAAPDZnroll(HBT hbtBioTechnology,
DWORD EnrollType,
LPSCREENATTRD3S IpScreenAttribs,
LPRAWBIODATA IpRawBioData,
LPBm IpNewBiolDRec,
LPENROLLMENTPAGES IpPages);

HAAPDXRROR WINAPI CALLBACK HAAPIUpdate(HBT hbtBioTechnology,
LPRAWBIODATA IpOldRawBioData,
LPRAWBIODATA IpNewRawBioData,
LPBER IpStoredBiolDRec,
LPBm IpNewBiolDRec)

HAAPIERROR WINAPI CALLBACK HAAPDLiveVerify(HBT hbtBioTechnology,
LPBm IpStoredBIR,
LPBm IpAdaptedBIR,
int iTimeout,
LPBOOL IpbResponse)

22 April 1998

Interface Specification 73
HA-API,Ver2.0

HAAPEERROR WINAPI HAAPIFree(HBT hbtBioTechnology,
LPSCREENATTRIBS IpScreenAttribs);

HAAPIERROR WINAPI CALLBACK HAAPnnformation(HBT hbtBioTechnology,
long IVendorlnfo,
LPVOID IpData,
DWORD cbSize);

HAAPD5RROR WINAPI HAAPD3ioProperties(HBT hbtBioTechnology,
LPSCREENATTRIBS IpScreenAttribs)

22 April 1998

Interface Specification
HA-API,Ver2.0

74

Appendix B - Defines

Types:

#define HBT DWORD
#define HAAPIERROR long
#define HAAPI NOTIMEOUT 0x0000

#define HAAPI_ALL_TECH 0x0000
#define HAAPI_FINGER_TECH BIO_ALL_TECH + 0x0001
#define HAAPI_SPEECH_TECH BIO_ALL_TECH + 0x0002
#define HAAPI FACIAL TECH BIO ALL TECH + 0x0003

#define HAAPI BASECONSTANT 0x0000
#define HAAPI MAJORVERSION HAAPI
#define HAAPI MINORVERSION HAAPI
#define HAAPI BUILDVERSION HAAPI
#define HAAPI BUILDDATE HAAPI
#define HAAPI VENDORNAME HAAPI
#define HAAPI TECHNAME HAAPI
#define HAAPI_VENDORBASE HAAPI

#defineRAW TYPE 0x0001
#defineBIR_TYPE 0x0002

#defineENROLL CAPTURE 0x0001
#defineENROLL BIR 0x0002
#defineENROLL RAW 0x0004

BASECONSTANT + 0x0001
BASECONSTANT + 0x0002
BASECONSTANT + 0x0003
BASECONSTANT + 0x0004

"BASECONSTANT + 0x0005
BASECONSTANT + 0x0006
BASECONSTANT + OxOOFF

22 April 1998

Interface Specification 75
HA-API,Ver2.0

Appendix C - Enumerated Types

No Enumerated Types are currently defined.

22 April 1998

Interface Specification 76
HA-API,Ver2.0

!'*... *"" * ~"T "3' " ' • " i* ' TA ."" '.. ."V. "."'

Appendix D - C++ Classes

No C++ Classes are currently defined

22 April 1998

Interface Specification
HA-API,Ver2.0

77

^s^^sxnr's^r ^^^^^Ä^^^^^f^^^^Ä^

Appendix E - Error Codes, BUIDs and GUIDs

As error codes are added to this list, they should be included in the error header file. The
error code scheme is as follows: All functions return either HAAPINOERROR or
HAAPI_ERROR. Upon error conditions, the vendor module must use the WIN32
function SetLastError to set a specific error code for the last event. This error code can
then be retrieved by the application through a call to the WIN32 function GetLastError.
To further integrate this process into the WIN32 API, the vendor must provide a textual
explanation of the error code, making the error code translatable through a call to
FormatMessage. For more information refer to the Microsoft Win32 documentation
under Last-Error Code and Message Table Resources.

Error codes are the responsibility of the vendor. The only requirements for error codes
are:

1. They do not overlap the pre-defined HAAPI error codes.

2. The 29th bit of the error code is set to 1.

The following error codes are returned from the HAAPI runtime DLL's. The vendor is

not limited to using just these error codes.

Error Code Value

HAAPI_NOERROR
HAAPI_ERROR
HAAPI BASEERROR

0
-1
0x2F000000

HAAPIJNVALIDBUID
HAAPI INVALIDPARAMETERS

HAAPI_BASEERROR + 0x00000001
HAAPI BASEERROR+ 0x00000002

HAAPI_REGISTRYERROR
HAAPI_MEMORYALLOCERROR
HAAPIJNVALIDMODULENAME
HAAPIJNVALIDTECHNOLOGYNAME
HAAPI_INVALIDENROLLMENTFNNAME
HAAPIJNVALIDCAPTUREFNNAME
HAAPIJNVALIDPROCESSFNNAME
HAAPI INVALIDVERIFYFNNAME

HAAPI
HAAPI
HAAPI
HAAPI
HAAPI
HAAPI
HAAPI
HAAPI

BASEERROR +
BASEERROR +
BASEERROR +
BASEERROR +
BASEERROR +
BASEERROR+

BASEERROR +
BASEERROR +

0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
OxOOOOOOOA

22 April 1998

Interface Specification
HA-API,Ver2.0

78

HAAPIJNVALIDLIVEVERIFYFNNAME HAAPI
HAAPIJNVALIDUPDATEFNNAME HAAPl"
HAAPIJNVALIDINFOFNNAME HAAPl"
HAAPIJNVALIDFREEFNNAME HAAPl"
HAAPI_INVALIDBIOPROPFNNAME HAAPl"
HAAPI_REGISTRYSUBSYSTEMFAILURE HAAPl"
HAAPIJJSERCANCEL HAAPl"
HAAPI_GENERALERROR HAAPl"
HAAPI_ADAPTEDBIR HAAPl"

HAAPI_ADAPTATIONNOTSUPPORTED HAAPl"
HAAPI_NOBIOPROPERTIESPAGE HAAPl"

HAAPI_BUIDTABLEALREADYINIT HAAPI
HAAPI_BUIDTABLENOTINIT HAAPl"
HAAPIJNVALIDFNTYPE HAAPf
HAAPI_CORRUPTTABLEMANAGER HAAPI_
HAAPI_TABLEMANAGERFAILURE HAAPI_
HAAPI_UNABLETOLOADVENDORMODULE HAAPI_
HAAPI_UNABLETOUNLOADVENDORMODULE HAAPI_
HAAPI_VENDORMODULENOTPRESENT HAAPI

HAAPI_MODULESUBSYSTEMFAILURE
HAPPI_MODULESUBSYSTEMCORRUPT

HAAPI_INVALIDCAPTUREFUNCTION
HAAPIJNVALIDENROLLFUNCTION
HAAPI_INVALIDVERIFYFUNCTION
HAAPIJNVALIDLIVEVERIFYFUNCTION
HAAPIJNVALIDPROCESSFUNCTION
HAAPI_INVALIDINFOFUNCTION
HAAPIJNVALIDFREEFUNCTION
HAAPIJNVALIDUPDATEFUNCTION
HAAPIJNVALIDBIOPROPFUNCTION

HAAPI_INVALIDOS
HAAPI INVALIDHBT

.BASEERROR +

.BASEERROR +
BASEERROR +
BASEERROR +
BASEERROR +
BASEERROR +
BASEERROR +
BASEERROR +
BASEERROR +
BASEERROR +
BASEERROR +

OxOOOOOOOB
OxOOOOOOOC
OxOOOOOOOD
OxOOOOOOOE
OxOOOOOOOF
0x00000010
0x00000011
0x00000012
0x00000013
0x00000014
0x00000015

BASEERROR
BASEERROR
BASEERROR
BASEERROR
BASEERROR
BASEERROR
BASEERROR
BASEERROR

+ 0x00000020
+ 0x00000021
+ 0x00000022
+ 0x00000023
+ 0x00000024
+ 0x00000025
+ 0x00000026
+ 0x00000027

HAAPI_BASEERROR + 0x00000030
HAAPIBASEERROR + 0x00000031

HAAPI_BASEERROR + 0x00000040
HAAPIBASEERROR + 0x00000041

HAAPI_BASEERROR + 0x00000042
HAAPI_BASEERROR + 0x00000043
HAAPIBASEERROR + 0x00000044
HAAPI_BASEERROR + 0x00000045
HAAPIBASEERROR + 0x00000046
HAAPIBASEERROR + 0x00000047
HAAPIBASEERROR + 0x00000048

HAAPIBASEERROR + 0x00000050
HAAPI BASEERROR+ 0x00000051

22 April 1998

Interface Specification 79
HA-API,Ver2.0

Appendix F - Scores and Thresholds

The following discussion of scoring and thresholds is provided to emphasize the criticality
of these values in a biometric system. In most cases, a biometric vendor's pre-set
threshold is adequate and need not be changed, nor matching scores returned. In the rare
situations where this is required, it is important to understand the effect of changing the
pre-set threshold on the ultimate performance (i.e., matching accuracy) of the system.

When two identifiers are compared in order to determine whether or not they match (i.e.,
belong to the same person, or part of a person), an algorithm is used compare the two
entities and return a score, which represents a probability that the two biometric
characteristics are the same. This is not as simple as comparing two string values, where
the comparison determines if an exact match exists or does not exist. Once a score has
been calculated, it must be compared against a pre-set threshold value. If the score is
above the threshold, a match is said to exist. If the score is below the threshold, a match
is said not to exist.

The threshold value used determines the accuracy of the system in terms of error rates.
There are two types of errors that can occur in a biometric system, a false accept (match)
or a false reject (non-match).

A false accept occurs when two biometrics which should not match (belong to different
people) are determined to match, (that is, the match score exceeded the threshold).

A false non-match occurs when two biometric which should match (belong the same
person) are determined not to match (that is, the match score did not exceed the
threshold). This can happen, for example, when a person places their finger incorrectly on
a finger image scanner. This is generally corrected by a second attempt.

No biometric technology is 100% accurate, although many are close. The overall error
rate is made up of both false accept and false reject errors. Generally, changing a
matching threshold will cause one type of error to increase and the other to decrease.
Depending on the application in which it is used, one type of error may be more
acceptable than another. For example, biometrics for a physical access control to a
nuclear weapons facility may be intolerant of false accepts, and therefore more tolerant of
false rejects. A customer service application, on the other hand, may choose to accept a
higher level of false matches in order to avoid falsely rejecting a customer.

22 April 1998

Interface Specification 80
HA-API,Ver2.0

Within HA-API, an application is able to get and set thresholds and to request matching
scores using the HAAPIInformation function. The scores/thresholds returned are defined
to be a floating point value between 0 and 100. It is very important to realize that the
values returned by a BSP are generally NOT LINEAR and VARY SIGNIFICANTLY
from one BSP to another. It is not correct to compare in any way scores returned by two
different BSPs. Nor is it generally appropriate to use the same threshold setting for two
different BSPs, as the effect on the accuracy of each may be vastly different. Refer to the
BSP vendor documentation to interpret the score/threshold data used by that specific
BSP.

A threshold set incorrectly can cause a system to perform poorly. BSP vendors know
their own technology better than anyone else can. They determine the default threshold
setting, which is set upon installation. Applications that choose to alter this value do so at
their own risk.

22 April 1998

Interface Specification
HA-API,Ver2.0

81

^^^Mwmwwmmsmm

Appendix G - Sample Screens

The following screens are provided as examples of Windows GUI implementations.
Screens provided by biometrics technology vendors for inclusion in the HA-API BSP are
expected to employ similar mechanisms.

Enrollment Capture Screen

NRTd Ennftll-mr-nt Wimr»rd

'"'
>•■',• ■»• !■'

' -<V »&$ »¥«>■ ■'■}■■' >■■■■ yts*XV

m .- ' ■•■ '

-. 'V. v,. ■

>Ei i/3-::si. .

! ~~r^' . - ' .• , - ;

22 April 1998

Interface Specification
HA-API,Ver2.0

82

Dialog Box

Dialin Information

^•"IWf £ /.«v^ri
i:Kl"a..:^..vaJ<»vrflfc.-<->^» :

UUi.

EfeSpä
fM> m

\M

Message Box

'llacr Manager

■ i V. ■. tvtt.rtiii whinr*

3£1

22 April 1998

INTERNET DOCUMENT INFORMATION FORM

A . Report Title: Interface Specification Human Authentication-
Application Program Interface (HA-API) Version 2.0

B. DATE Report Downloaded From the Internet 8/31/98

C. Report's Point of Contact: (Name, Organization, Address,
Office Symbol, & Ph #): U.S. Biometrics Consortium

ATTN: Major John Colombi, PHD
C/0NSA/R22, Suite 6516
9800 Savage Rd
Fort Meade, MD 20755-6516

D. Currently Applicable Classification Level: Unclassified

E. Distribution Statement A: Approved for Public Release

F. The foregoing information was compiled and provided
DTIC-OCA, Initials: Ü (Y\ Preparation Date:9 R>)

ay:

The foregoing information should exactly correspond to the Title, Report Number, and the Date on
the accompanying report document. If there are mismatches, or other questions, contact the
above OCA Representative for resolution.

